
SML Docs Interlude First-Class Functions Example

CSE341 – Section 3
Standard-Library Docs, Unnecessary Function Wrapping, Map,

& More

Cody A. Schroeder

January 24th, 2013

Cody A. Schroeder CSE341 – Section 3

SML Docs Interlude First-Class Functions Example

1 SML Docs
Standard Basis

2 Interlude

3 First-Class Functions
Anonymous
Style Point
Higher-Order

4 Example

Cody A. Schroeder CSE341 – Section 3

SML Docs Interlude First-Class Functions Example Standard Basis

Standard Basis Documentation

Online Documentation

http://www.standardml.org/Basis/index.html

http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html

Helpful Subset

Top-Level http://www.standardml.org/Basis/top-level-chapter.html

List http://www.standardml.org/Basis/list.html

ListPair http://www.standardml.org/Basis/list-pair.html

Real http://www.standardml.org/Basis/real.html

String http://www.standardml.org/Basis/string.html

Cody A. Schroeder CSE341 – Section 3

SML Docs Interlude First-Class Functions Example

Interlude

Questions

How’s life?

Tail-recursion?

Pattern-matching?

Note

Extra Lecture Material: http://www.cs.washington.edu/

education/courses/cse341/13wi/videos/unit3/

Cody A. Schroeder CSE341 – Section 3

SML Docs Interlude First-Class Functions Example Anonymous Style Point Higher-Order

Anonymous Functions

An Anonymous Function

fn pattern => expression

An expression that creates a new function with no name.
Usually used as an argument to a higher-order function.
Almost equivalent to the following:

let fun name pattern = expression in name end

The difference is that anonymous functions cannot be recursive!!!

Simple Example

1 fun doSomethingWithFive f = f 5;
2 val x1 = doSomethingWithFive (fn x => x∗2); (∗ x1=10 ∗)
3 val x2 = (fn x => x+9) 6; (∗ x2=15 ∗)
4 val cube = fn x => x∗x∗x;
5 val x3 = cube 4; (∗ x3=12 ∗)
6 val x4 = doSomethingWithFive cube; (∗ x4=15 ∗)

Cody A. Schroeder CSE341 – Section 3

SML Docs Interlude First-Class Functions Example Anonymous Style Point Higher-Order

Anonymous Functions

What’s the difference between the following two bindings?

val name = fn pattern => expression;
fun name pattern = expression;

Once again, the difference is recursion.

However, excluding recursion, a fun binding could just be
syntactic sugar for a val binding and an anonymous function.

This is because there are no recursive val bindings in SML.

Cody A. Schroeder CSE341 – Section 3

SML Docs Interlude First-Class Functions Example Anonymous Style Point Higher-Order

Anonymous Functions (cont.)

Previous Example

1 fun n times (f ,n,x) = if n=0
2 then x
3 else f (x times (f , n−1, x));
4

5 fun square x = x∗x;
6 fun increment x = x+1;
7

8 val x1 = n times (square , 4, 7);
9 val x2 = n times (increment, 4, 7);

10 val x3 = n times (tl , 2, [4,8,12,16]);

With Anonymous Functions

1 val x1 = n times (fn x => x∗x, 4, 7);
2 val x2 = n times (fn x => x+1, 4, 7);
3 val x3 = n times (fn xs => tl xs, 2, [4,8,12,16]); (∗ Bad Style ∗)

Cody A. Schroeder CSE341 – Section 3

SML Docs Interlude First-Class Functions Example Anonymous Style Point Higher-Order

Unnecessary Function Wrapping

What’s the difference between the following two expressions?

(fn xs => tl xs) vs. tl

STYLE POINTS!

Other than style, these two expressions result in the exact
same thing.

However, one creates an unnecessary function to wrap tl.

This is very similiar to this style issue:

(if ex then true else false) vs. ex

Cody A. Schroeder CSE341 – Section 3

SML Docs Interlude First-Class Functions Example Anonymous Style Point Higher-Order

Higher-Order Functions

A function that returns a function or takes a function as an
argument.

Two Canonical Examples

map : (’a -> ’b) * ’a list -> ’b list

Applies a function to every element of a list and return a list of
the resulting values.
Example: map (fn x => x*3, [1,2,3]) === [3,6,9]

filter : (’a -> bool) * ’a list -> ’a list

Returns the list of elements from the original list that, when a
predicate function is applied, result in true.
Example: filter (fn x => x>2, [~5,3,2,5]) === [3,5]

Note: List.map and List.filter are similarly defined in SML but use
currying. We’ll cover these later in the course.

Cody A. Schroeder CSE341 – Section 3

SML Docs Interlude First-Class Functions Example Anonymous Style Point Higher-Order

Defining map and filter

map

1 fun map (f, lst) =
2 case lst of
3 [] => []
4 | x::xs => f x :: map (f,xs)

filter

1 fun filter (f, lst) =
2 case lst of
3 [] => []
4 | x::xs => if f x
5 then x::filter (f, xs)
6 else filter (f, xs)

Cody A. Schroeder CSE341 – Section 3

SML Docs Interlude First-Class Functions Example Anonymous Style Point Higher-Order

Broader Idea

Functions are Awesome!

SML functions can be passed around like any other value.

They can be passed as function arguments, returned, and
even stored in data structures or variables.

Functions like map are very pervasive in functional languages.

A function like map can even be written for other data
structures such as trees.

Returning a function

1 fun piecewise x = if x < 0.0
2 then fn x => x∗x
3 else if x < 10.0
4 then fn x => x / 2.0
5 else fn x => 1.0 / x + x

Cody A. Schroeder CSE341 – Section 3

SML Docs Interlude First-Class Functions Example

Tree Example

1 (∗ Generic Binary Tree Type ∗)
2 datatype ’a tree = Empty
3 | Node of ’a ∗ ’a tree ∗ ’a tree
4

5 (∗ Apply a function to each element in a tree . ∗)
6 val treeMap = fn : (’a −> ’b) ∗ ’a tree −> ’b tree
7

8 (∗ Returns true iff the given predicate returns true when applied to
9 each element in a tree . ∗)

10 val treeAll = fn : (’a −> bool) ∗ ’a tree −> bool

Cody A. Schroeder CSE341 – Section 3

SML Docs Interlude First-Class Functions Example

exp Example

1 (∗ Modified expression datatype from lecture 5. Now there are
2 variables . ∗)
3 datatype exp = Constant of int
4 | Negate of exp
5 | Add of exp ∗ exp
6 | Multiply of exp ∗ exp
7 | Var of string
8

9 (∗ Do a post−order traversal of the given exp. At each node, apply a
10 function f to it and replace the node with the result . ∗)
11 val visitPostOrder = fn : (exp −> exp) ∗ exp −> exp
12

13 (∗ Simplify the root of the expression if possible . ∗)
14 val simplifyOnce = fn : exp −> exp
15

16 (∗ Almost the same as evaluate but leaves variables alone . ∗)
17 val simplify = fn : exp −> exp

Cody A. Schroeder CSE341 – Section 3

