CSE341 — Section 3

Standard-Library Docs, Unnecessary Function Wrapping, Map,
& More

Cody A. Schroeder

January 24" 2013

Cody A. Schroeder CSE341 — Section 3



@ SML Docs
@ Standard Basis

© Interlude

© First-Class Functions
@ Anonymous
@ Style Point
@ Higher-Order

@ Example

Cody A. Schroeder CSE341 — Section 3



Standard Basis Documentation

Online Documentation

http://www.standardml.org/Basis/index.html
http://www.smlnj.org/doc/smlnj-1ib/Manual/toc.html

Helpful Subset

Top-Level http://www.standardml.org/Basis/top-level-chapter.html

List http://www.standardml.org/Basis/list.html
ListPair http://www.standardml.org/Basis/list-pair.html
Real http://www.standardml.org/Basis/real.html
String http://www.standardml.org/Basis/string.html

Cody A. Schroeder CSE341 — Section 3


http://www.standardml.org/Basis/index.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://www.standardml.org/Basis/top-level-chapter.html
http://www.standardml.org/Basis/list.html
http://www.standardml.org/Basis/list-pair.html
http://www.standardml.org/Basis/real.html
http://www.standardml.org/Basis/string.html

Interlude

How's life?

Tail-recursion?

Pattern-matching?

Extra Lecture Material: http://www.cs.washington.edu/
education/courses/cse341/13wi/videos/unit3/

Cody A. Schroeder CSE341 — Section 3


http://www.cs.washington.edu/education/courses/cse341/13wi/videos/unit3/
http://www.cs.washington.edu/education/courses/cse341/13wi/videos/unit3/

Style Point Higher-Order

mous Functions

An Anonymous Function

fn pattern => expression

@ An expression that creates a new function with no name.
@ Usually used as an argument to a higher-order function.
@ Almost equivalent to the following:

let fun name pattern = expression in name end

@ The difference is that anonymous functions cannot be recursive!!!

4

Simple Example

1 fun doSomethingWithFive f = f 5;

2 val x1 = doSomethingWithFive (fn x => x*2); (* x1=10 %)
3 val x2 = (fn x => x+9) 6; (* x2=15 )
4 val cube = fn x => xxxxx;

s val x3 = cube 4; (x x3=12 %)
6 val x4 = doSomethingWithFive cube; (x x4=15 x)

Cody A. Schroeder CSE341 — Section 3



Style Point Higher-Order

mous Functions

What's the difference between the following two bindings?

val name = fn pattern => expression;
fun name pattern = expression;

@ Once again, the difference is recursion.

@ However, excluding recursion, a fun binding could just be
syntactic sugar for a val binding and an anonymous function.

@ This is because there are no recursive val bindings in SML.

Cody A. Schroeder CSE341 — Section 3



Style Point Higher-Order

mous Functions (cont.)

Previous Example

fun n_times (f,n,x) = if n=0
then x
else f (x-times (f, n—1, x));

fun increment x = x+1;

val x1 = n_times (square, 4, 7);
val x2 = n_times (increment, 4, 7);
10 val x3 = n_times (tl, 2, [4,8,12,16]);

With Anonymous Functions

1 val x1 = n_times (fn x => x*x, 4, 7);
> val x2 = n_times (fn x => x+1, 4, 7);
s val x3 = n_times (fn xs => tl xs, 2, [4,8,12,16]); (+ Bad Style x)

1
2
B}
4
s fun square x = xxx;
6
7
8
9

N

Cody A. Schroeder CSE341 — Section 3



Anonymous Higher-Order

Unnecessary Function Wrapping

What's the difference between the following two expressions?

(fn xs => tl xs) VS. tl

STYLE POINTS!

@ Other than style, these two expressions result in the exact
same thing.

@ However, one creates an unnecessary function to wrap tl.

@ This is very similiar to this style issue:

(if ex then true else false) vs. ex

Cody A. Schroeder CSE341 — Section 3



Anonymous Style Point
Higher-Order Functions

@ A function that returns a function or takes a function as an
argument.

<

Two Canonical Examples

emap : (’a -> ’b) * ’a list -> ’b list
o Applies a function to every element of a list and return a list of
the resulting values.
o Example: map (fn x => x*3, [1,2,3]) === [3,6,9]
o filter : (’a -> bool) * ’a list -> ’a list
o Returns the list of elements from the original list that, when a

predicate function is applied, result in true.
o Example: filter (fn x => x>2, [75,3,2,5]) === [3,5]

Note: List.map and List.filter are similarly defined in SML but use
currying. We'll cover these later in the course.

Cody A. Schroeder CSE341 — Section 3




Anonymous Style Point

Defining map and filter

map

1 fun map (f, Ist) =

2 case Ist of

£ 0=>10

4 | x::xs => f x :: map (f,xs)

1 fun filter (f, Ist) =

2 case Ist of

3 0=>1

4 | x:xs => if f x

5 then x::filter (f, xs)
6 else filter (f, xs)

Cody A. Schroeder CSE341 — Section 3



Anonymous Style Point

Broader ldea

Functions are Awesome!

@ SML functions can be passed around like any other value.

@ They can be passed as function arguments, returned, and
even stored in data structures or variables.
@ Functions like map are very pervasive in functional languages.

o A function like map can even be written for other data
structures such as trees.

v

Returning a function

1 fun piecewise x = if x < 0.0

2 then fn x => xxx

3 else if x < 10.0

4 then fn x =>x / 2.0

5 else fn x => 1.0 / x + x

Cody A. Schroeder CSE341 — Section 3



Tree Example

1 (* Generic Binary Tree Type %)
> datatype 'a tree = Empty
3 | Node of 'a * 'a tree * 'a tree

5 (* Apply a function to each element in a tree. )
6 val treeMap = fn: ("a —> 'b) * 'a tree —> 'b tree

s (* Returns true iff the given predicate returns true when applied to
9 each element in a tree. x)
10 val treeAll =fn: ("a —> bool) x 'a tree —> bool

Cody A. Schroeder CSE341 — Section 3



exp Example

1 (x Modified expression datatype from lecture 5. Now there are

2 variables . )

3 datatype exp = Constant of int

4 | Negate of exp

5 | Add of exp * exp

6 | Multiply of exp * exp
7 | Var of string

9 (* Do a post—order traversal of the given exp. At each node, apply a

10 function f to it and replace the node with the result . x*)
1 val visitPostOrder = fn : (exp —> exp) * exp —> exp

12

13 (% Simplify the root of the expression if possible. )

12 val simplifyOnce = fn : exp —> exp

15

16 (* Almost the same as evaluate but leaves variables alone. x)
17 val simplify = fn : exp —> exp

Cody A. Schroeder CSE341 — Section 3



	SML Docs
	Standard Basis

	Interlude
	First-Class Functions
	Anonymous
	Style Point
	Higher-Order

	Example

