
Subtyping Review The Future

CSE341 – Section 10
Subtyping, Review, and The Future

Cody A. Schroeder

Happy Pi Day, 2013!!!

Cody A. Schroeder CSE341 – Section 10



Subtyping Review The Future

Outline

1 Subtyping
Overview

2 Review
Topics
Questions?

3 The Future
Languages
Courses

Cody A. Schroeder CSE341 – Section 10



Subtyping Review The Future Overview

Records Overview

Creation

{f0=e0, f1=e1, ..., fn=en}

Access/Update

e.field e1.field = e2

Type Signature

{f1:t1, f2:t2, ..., fn:tn}

Cody A. Schroeder CSE341 – Section 10



Subtyping Review The Future Overview

Subtyping Overview

Subtyping Relation

t1 <: t2 ≡ t1 extends t2 ≡ t1 is a subtype of t2

Additional Type Rule

If t1 <: t2 and e has type t1, then e also has type t2

Record Subtyping Rules

Width subtyping: A supertype can have fewer fields
Permutation subtyping: A supertype can have reordered fields
Transitivity: If t1 <: t2 and t2 <: t3, then t1 <: t3.
Reflexivity: t <: t for any t (anything is a subtype of itself)

Cody A. Schroeder CSE341 – Section 10



Subtyping Review The Future Overview

Function Types

Function Subtyping Rules

If t2 <: t4 and t3 <: t1, then t1 -> t2 <: t3 -> t4.
Function subtyping is covariant for their return types
Function subtyping is contravariant for their argument types

Any subtyping rules conflicting with the above are simply unsound. . .

Cody A. Schroeder CSE341 – Section 10



Subtyping Review The Future Overview

Objects

Objects are basically the same as records except there is a split
between mutable and immutable fields.

Mutable fields are instance variables
Immutable fields are methods

Subtyping of objects happens almost the same way as records
e.g. Java/C# disallow contravariant method arguments

The implicit self parameter in methods is covariant
Subclassing is not equivalent to subtyping except in weird
languages like Java

Cody A. Schroeder CSE341 – Section 10



Subtyping Review The Future Overview

Pop Quiz

Are these sound or not? (if not, give a counter-example)

When overriding a method, we can change an argument type
to be a supertype of what it was in the superclass’ method.

Sound (contravariant argument types)
When overriding a method, we can change an argument type
to be a subtype of what it was in the superclass’ method.

Unsound (covariant argument types)
When overriding a method, we can change the result type to
be a supertype of what it was in the superclass’ method.

Unsound (contravariant return types)

Cody A. Schroeder CSE341 – Section 10



Subtyping Review The Future Overview

Pop Quick (cont.)

Are these sound or not? (if not, give a counter-example)

When overriding a method, we can change the result type to
be a subtype of what it was in the superclass’ method.

Sound (covariant return types)
A subclass can change the type of a (mutable) field to be a
subtype of what it was in the superclass. (This is changing the
type of a field, not adding a second field.)

Unsound (depth subtyping on mutable fields)
A subclass can change the type of a (mutable) field to be a
supertype of what it was in the superclass. (This is changing
the type of a field, not adding a second field.)

Unsound (depth subtyping on mutable fields)

Cody A. Schroeder CSE341 – Section 10



Subtyping Review The Future Topics Questions?

At a Glance
Benefits of no mutation
Algebraic datatypes, pattern matching
Higher-order functions; closures; tail recursion
Lexical scope
Currying; syntactic sugar
Equivalence and side-effects
Type inference
Dynamic vs. static typing
Laziness, streams, and memoization
Macros
Dynamic dispatch; double-dispatch
Multiple inheritance, interfaces, and mixins
OO vs. functional decomposition and extensibility
Subtyping for records, functions, and objects
Class-based subtyping
Parametric polymorphism; bounded polymorphism

Cody A. Schroeder CSE341 – Section 10



Subtyping Review The Future Topics Questions?

Questions?

What are your questions?!?!?!

Cody A. Schroeder CSE341 – Section 10



Subtyping Review The Future Languages Courses

Some Fun Languages

Rust (a “better” C)
Systems language with optional GC and no data-races

Clojure (modern, concurrency-focused Lisp hosted on the JVM)
Persistent, immutable data structures
Concurrency primitives with an STM: atoms, vars, agents; refs

Haskell (lazy, pure ML-like language)
Category theory: Monads, Monoids, Functors, . . .
Type classes, parsec, super-awesome type system, . . .

Scala (combine FP with OOP and the JVM)
Actors framework, partial functions, comprehensions, . . .
Implicit parameters, delimited continuations, . . .

Forth / Factor (concatenative, stack-based languages)
APL (array-based)

infinite keyboard language

Cody A. Schroeder CSE341 – Section 10



Subtyping Review The Future Languages Courses

Future Courses

CSE333 – Systems Programming
CSE401 – Compilers
CSE501 – Implementation of Programming Languages
CSE505 – Concepts of Programming Languages

Cody A. Schroeder CSE341 – Section 10


	Subtyping
	Overview

	Review
	Topics
	Questions?

	The Future
	Languages
	Courses


