What is functional programming?

"Functional programming" can mean a few different things:

1. Avoiding mutation in most/all cases (done and ongoing)
2. Using functions as values (this unit)

...

- Style encouraging recursion and recursive data structures
- Style closer to mathematical definitions
- Programming idioms using laziness (later topic, briefly)
- Anything not OOP or C? (not a good definition)

Not sure a definition of “functional language” exists beyond “makes functional programming easy / the default / required”

- No clear yes/no for a particular language

First-class functions

- **First-class functions**: Can use them wherever we use values
 - Functions are values too
 - Arguments, results, parts of tuples, bound to variables, carried by datatype constructors or exceptions, ...

```plaintext
define double x = 2*x
define incr x = x+1
define a_tuple = (double, incr, double(incr 7))
```

- Most common use is as an argument / result of another function
 - Other function is called a higher-order function
 - Powerful way to factor out common functionality

Function Closures

- **Function closure**: Functions can use bindings from outside the function definition (in scope where function is defined)
 - Makes first-class functions much more powerful
 - Will get to this feature in a bit, after simpler examples

- Distinction between terms first-class functions and function closures is not universally understood
 - Important conceptual distinction even if terms get muddled

Onward

The next week:

- How to use first-class functions and closures
- The precise semantics
- Multiple powerful idioms

Functions as arguments

- We can pass one function as an argument to another function
 - Not a new feature, just never thought to do it before

```plaintext
fun f (g, ...) = ... g (...) ...
fun h1 ... = ...
fun h2 ... = ...
    ... f(h1, ...) ... f(h2, ...) ...
```

- Elegant strategy for factoring out common code
 - Replace N similar functions with calls to 1 function where you pass in N different (short) functions as arguments

[See the code file for this lecture]
Example

Can reuse `n_times` rather than defining many similar functions
- Computes \(f(f(\ldots f(x))) \) where number of calls is \(n \)

```plaintext
fun n_times (f,n,x) = 
  if n=0 
  then x 
  else f (n_times(f,n-1,x))
```

```plaintext
fun double x = x + x
fun increment x = x + 1
val x1 = n_times(double,4,7)
val x2 = n_times(increment,4,7)
val x3 = n_times(tl,2,[4,8,12,16])
```

Relation to types

- Higher-order functions are often so “generic” and “reusable” that they have polymorphic types, i.e., types with type variables
- But there are higher-order functions that are not polymorphic
- And there are non-higher-order (first-order) functions that are polymorphic
- Always a good idea to understand the type of a function, especially a higher-order function

Types for example

```plaintext
fun n_times (f,n,x) = 
  if n=0 
  then x 
  else f (n_times(f,n-1,x))
```

```plaintext
• val n_times : ('a -> 'a) * int * 'a -> 'a
  - Simpler but less useful: (int -> int) * int * int -> int

• Two of our examples instantiated 'a with int
• One of our examples instantiated 'a with int list
• This polymorphism makes n_times more useful

• Type is inferred based on how arguments are used (later lecture)
  - Describes which types must be exactly something (e.g., int) and which can be anything but the same (e.g., 'a)
```

Polymorphism and higher-order functions

- Many higher-order functions are polymorphic because they are so reusable that some types, “can be anything”
- But some polymorphic functions are not higher-order
 - Example: len : 'a list -> int
- And some higher-order functions are not polymorphic
 - Example: times_until_0 : (int -> int) * int -> int

```plaintext
fun times_until_0 (f,x) = 
  if x=0 then 0 else 1 + times_until_0(f, f x)
```

Note: Would be better with tail-recursion

Toward anonymous functions

- Definitions unnecessarily at top-level are still poor style:

```plaintext
fun triple x = 3*x
fun triple_n_times (f,x) = n_times(triple,n,x)
```

- So this is better (but not the best):

```plaintext
fun triple_n_times (f,x) = 
  let fun trip y = 3*y 
  in 
  n_times(trip,n,x) 
  end
```

- And this is even smaller scope
 - It makes sense but looks weird (poor style; see next slide)

```plaintext
fun triple_n_times (f,x) = 
  n_times(let fun trip y = 3*y in trip end, n, x)
```

Anonymous functions

- This does not work: A function binding is not an expression

```plaintext
fun triple_n_times (f,x) = 
  n_times((fun trip y = 3*y), n, x)
```

- This is the best way we were building up to: an expression form for anonymous functions

```plaintext
fun triple_n_times (f,x) = 
  n_times((fn y => 3*y), n, x)
```

- Like all expression forms, can appear anywhere
- Syntax:
 - `fn` not `fun`
 - `=>` not `=`
 - no function name, just an argument pattern
Using anonymous functions

- Most common use: Argument to a higher-order function
 - Don’t need a name just to pass a function

- But: Cannot use an anonymous function for a recursive function
 - Because there is no name for making recursive calls
 - If not for recursion, fun bindings would be syntactic sugar for val bindings and anonymous functions

```haskell
fun triple x = 3*x
val triple = fn y => 3*y
```

A style point

Compare:

```haskell
if x then true else false
```

With:

```haskell
(fn x => f x)
```

So don’t do this:

```haskell
n_times((fn y => tl y),3,xs)
```

When you can do this:

```haskell
n_times(tl,3,xs)
```

Map

```haskell
fun map (f,xs) =
case xs of
  [] => []
| x::xs' => (f x)::(map(f,xs'))
```

```haskell
val map : ('a -> 'b) * 'a list -> 'b list
```

Map is, without doubt, in the “higher-order function hall-of-fame”

- The name is standard (for any data structure)
- You use it all the time once you know it: saves a little space, but more importantly, communicates what you are doing
- Similar predefined function: List.map
 - But it uses currying (coming soon)

Filter

```haskell
fun filter (f,xs) =
case xs of
  [] => []
| x::xs' => if f x
  then x::(filter(f,xs'))
  else filter(f,xs')
```

```haskell
val filter : ('a -> bool) * 'a list -> 'a list
```

Filter is also in the hall-of-fame

- So use it whenever your computation is a filter
- Similar predefined function: List.filter
 - But it uses currying (coming soon)

Generalizing

Our examples of first-class functions so far have all:

- Taken one function as an argument to another function
- Processed a number or a list

But first-class functions are useful anywhere for any kind of data

- Can pass several functions as arguments
- Can put functions in data structures (tuples, lists, etc.)
- Can return functions as results
- Can write higher-order functions that traverse your own data structures

Useful whenever you want to abstract over “what to compute with”

- No new language features

Returning functions

- Remember: Functions are first-class values
 - For example, can return them from functions

- Silly example:

```haskell
fun double_or_triple f =
  if f 7
  then fn x => 2*x
  else fn x => 3*x
```

Has type (int -> bool) -> (int -> int)

But the REPL prints (int -> bool) -> int -> int

because it never prints unnecessary parentheses and t1 -> t2 -> t3 -> t4 means t1->(t2->(t3->t4))
Other data structures

- Higher-order functions are not just for numbers and lists
- They work great for common recursive traversals over your own data structures (datatype bindings) too
- Example of a higher-order predicate:
 - Are all constants in an arithmetic expression even numbers?
 - Use a more general function of type
 $$(\text{int} \rightarrow \text{bool}) \times \text{exp} \rightarrow \text{bool}$$
 - And call it with (fn x => x mod 2 = 0)