Nested patterns

- We can nest patterns as deep as we want
 - Just like we can nest expressions as deep as we want
 - Often avoids hard-to-read, wordy nested case expressions
- So the full meaning of pattern-matching is to compare a pattern against a value for the "same shape" and bind variables to the "right parts"
 - More precise recursive definition coming after examples

Useful example: zip/unzip 3 lists

```plaintext
fun zip3 lists =  
case lists of  
  ([],[],[]) => []  
| (hd1::tl1,hd2::tl2,hd3::tl3) =>  
  (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)  
| _ => raise ListLengthMismatch

fun unzip3 triples =  
case triples of  
  [] => ([],[],[])  
| (a,b,c)::tl =>  
  let val (l1, l2, l3) = unzip3 tl  
  in  
    (a::l1,b::l2,c::l3)  
  end
```

More examples to come (see code files)

Style

- Nested patterns can lead to very elegant, concise code
 - Avoid nested case expressions if nested patterns are simpler and avoid unnecessary branches or let-expressions
 - Example: unzip3 and nondecreasing
 - A common idiom is matching against a tuple of datatypes to compare them
 - Examples: zip3 and multsign
- Wildcards are good style: use them instead of variables when you do not need the data
 - Examples: len and multsign

(Most of) the full definition

The semantics for pattern-matching takes a pattern p and a value v and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:

- If p is a variable x, the match succeeds and x is bound to v
- If p is _, the match succeeds and no bindings are introduced
- If p is (p_1, \ldots, p_n) and v is (v_1, \ldots, v_n), the match succeeds if and only if p_1 matches v_1, ..., p_n matches v_n. The bindings are the union of all bindings from the submatches
- If p is $C\, p_1$, the match succeeds if v is $C\, v_1$ (i.e., the same constructor) and p_1 matches v_1. The bindings are the bindings from the submatch.
- ... (there are several other similar forms of patterns)

Examples

- Pattern $a::b::c::d$ matches all lists with ≥ 3 elements
- Pattern $a::b::c::[]$ matches all lists with 3 elements
- Pattern $(a,b), (c,d)::e$ matches all non-empty lists of pairs of pairs
Exceptions

An exception binding introduces a new kind of exception

```
exception MyFirstException
exception MySecondException of int * int
```

The `raise` primitive raises (a.k.a. throws) an exception

```
raise MyFirstException
raise (MySecondException(7,9))
```

A handle expression can handle (a.k.a. catch) an exception
– If doesn’t match, exception continues to propagate

```
e1 handle MyFirstException => e2
e1 handle MySecondException(x,y) => e2
```

Actually...

Exceptions are a lot like datatype constructors...

- Declaring an exception adds a constructor for type `exn`
- Can pass values of `exn` anywhere (e.g., function arguments)
 - Not too common to do this but can be useful
- Handle can have multiple branches with patterns for type `exn`

Recursion

Should now be comfortable with recursion:
- No harder than using a loop (whatever that is 😐)
- Often much easier than a loop
 - When processing a tree (e.g., evaluate an arithmetic expression)
 - Examples like appending lists
 - Avoids mutation even for local variables

- Now:
 - How to reason about efficiency of recursion
 - The importance of tail recursion
 - Using an accumulator to achieve tail recursion
 - [No new language features here]

Call-stacks

While a program runs, there is a call stack of function calls that have started but not yet returned
- Calling a function `f` pushes an instance of `f` on the stack
- When a call to `f` finishes, it is popped from the stack

These stack-frames store information like the value of local variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same function

Example

```
fun fact n = if n=0 then 1 else n*fact(n-1)
val x = fact 3
```

```
fact 3: 3*_
fact 3
fact 3: 3*-
fact 2
fact 2: 2*_
fact 2: 2*-
fact 1
fact 1: 1*-
fact 1: 1*1
fact 0
```

Example Revised

```
fun fact n = let fun aux(n,acc) =
  if n=0
  then acc
  else aux(n-1,acc*n)
in
aux(n,1)
end
val x = fact 3
```

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)
The call-stacks

```
fun fact n = 
  let fun aux(n,acc) = 
    if n=0 
      then acc 
      else aux(n-1,acc*n) 
  in 
  aux(n,1) 
  end 
val x = fact 3
```

An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee's result and return it without any further evaluation.

ML recognizes these tail calls in the compiler and treats them differently:

- Pop the caller before the call, allowing callee to reuse the same stack space
- (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do tail-call optimization

What really happens

```
fun fact n = 
  let fun aux(n,acc) = 
    if n=0 
      then acc 
      else aux(n-1,acc*n) 
  in 
  aux(n,1) 
  end 
val x = fact 3
```

Moral of tail recursion

- Where reasonably elegant, feasible, and important, rewriting functions to be tail-recursive can be much more efficient
 - Tail-recursive: recursive calls are tail-calls
- There is a methodology that can often guide this transformation:
 - Create a helper function that takes an accumulator
 - Old base case becomes initial accumulator
 - New base case becomes final accumulator

Methodology already seen

```
fun fact n = 
  let fun aux(n,acc) = 
    if n=0 
      then acc 
      else aux(n-1,acc*n) 
  in 
  aux(n,1) 
  end 
val x = fact 3
```

Another example

```
fun sum xs = 
  case xs of 
    [] => 0 
    | x::xs' => x + sum xs' 

fun sum xs = 
  let fun aux(xs,acc) = 
    case xs of 
      [] => acc 
      | x::xs' => aux(xs',x+acc) 
  in 
  aux(xs,0) 
end 
```
And another

```haskell
fun rev xs = 
    case xs of 
     [] => [] 
    | x::xs' => (rev xs') @ [x]
```

```haskell
fun rev xs = 
    let fun aux(xs,acc) = 
          case xs of 
           [] => acc 
           | x::xs' => aux(xs',x::acc) 
    in 
    aux(xs,[]) 
    end
```

Actually much better

```haskell
fun rev xs = 
    case xs of 
     [] => [] 
    | x::xs' => (rev xs') @ [x]
```

- For `fact` and `sum`, tail-recursion is faster but both ways linear time
- Non-tail recursive `rev` is quadratic because each recursive call uses append, which must traverse the first list
 - And 1+2+...+(length-1) is almost length*length/2
 - Moral: beware list-append, especially within outer recursion
- Cons constant-time (and fast), so accumulator version much better

Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space

Most obvious examples are functions that process trees

In these cases, the natural recursive approach is the way to go
 - You could get one recursive call to be a tail call, but rarely worth the complication

Also beware the wrath of premature optimization
 - Favor clear, concise code
 - But do use less space if inputs may be large

What is a tail-call?

The “nothing left for caller to do” intuition usually suffices
 - If the result of `f x` is the “immediate result” for the enclosing function body, then `f x` is a tail call

But we can define “tail position” recursively
 - Then a “tail call” is a function call in “tail position”

Precise definition

A tail call is a function call in tail position

- If an expression is not in tail position, then no subexpressions are
- In `fun f p = e`, the body `e` is in tail position
- If `if e1 then e2 else e3` is in tail position, then `e2` and `e3` are in tail position (but `e1` is not). (Similar for case-expressions)
- If `let b1 ... bn in e end` is in tail position, then `e` is in tail position (but no binding expressions are)
- Function-call arguments `e1 e2` are not in tail position
- ...