
CSE341: Programming Languages

Lecture 6

Nested Patterns

Exceptions

Tail Recursion

Dan Grossman

Winter 2013

Nested patterns

• We can nest patterns as deep as we want

– Just like we can nest expressions as deep as we want

– Often avoids hard-to-read, wordy nested case expressions

• So the full meaning of pattern-matching is to compare a pattern

against a value for the “same shape” and bind variables to the

“right parts”

– More precise recursive definition coming after examples

Winter 2013 2 CSE341: Programming Languages

Useful example: zip/unzip 3 lists

Winter 2013 3 CSE341: Programming Languages

fun zip3 lists =

 case lists of

 ([],[],[]) => []

 | (hd1::tl1,hd2::tl2,hd3::tl3) =>

 (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)

 | _ => raise ListLengthMismatch

fun unzip3 triples =

 case triples of

 [] => ([],[],[])

 | (a,b,c)::tl =>

 let val (l1, l2, l3) = unzip3 tl

 in

 (a::l1,b::l2,c::l3)

 end

 More examples to come (see code files)

Style

• Nested patterns can lead to very elegant, concise code

– Avoid nested case expressions if nested patterns are simpler

and avoid unnecessary branches or let-expressions

• Example: unzip3 and nondecreasing

– A common idiom is matching against a tuple of datatypes to

compare them

• Examples: zip3 and multsign

• Wildcards are good style: use them instead of variables when

you do not need the data

– Examples: len and multsign

Winter 2013 4 CSE341: Programming Languages

(Most of) the full definition

The semantics for pattern-matching takes a pattern p and a value v

and decides (1) does it match and (2) if so, what variable bindings

are introduced.

Since patterns can nest, the definition is elegantly recursive, with a

separate rule for each kind of pattern. Some of the rules:

• If p is a variable x, the match succeeds and x is bound to v

• If p is _, the match succeeds and no bindings are introduced

• If p is (p1,…,pn) and v is (v1,…,vn), the match succeeds if and

only if p1 matches v1, …, pn matches vn. The bindings are the

union of all bindings from the submatches

• If p is C p1, the match succeeds if v is C v1 (i.e., the same

constructor) and p1 matches v1. The bindings are the bindings

from the submatch.

• … (there are several other similar forms of patterns)

 Winter 2013 5 CSE341: Programming Languages

Examples

– Pattern a::b::c::d matches all lists with >= 3 elements

– Pattern a::b::c::[] matches all lists with 3 elements

– Pattern ((a,b),(c,d))::e matches all non-empty lists of

pairs of pairs

Winter 2013 6 CSE341: Programming Languages

Exceptions

An exception binding introduces a new kind of exception

The raise primitive raises (a.k.a. throws) an exception

A handle expression can handle (a.k.a. catch) an exception

– If doesn’t match, exception continues to propagate

Winter 2013 7 CSE341: Programming Languages

exception MyFirstException

exception MySecondException of int * int

raise MyFirstException

raise (MySecondException(7,9))

e1 handle MyFirstException => e2

e1 handle MySecondException(x,y) => e2

Actually…

Exceptions are a lot like datatype constructors…

• Declaring an exception adds a constructor for type exn

• Can pass values of exn anywhere (e.g., function arguments)

– Not too common to do this but can be useful

• Handle can have multiple branches with patterns for type exn

Winter 2013 8 CSE341: Programming Languages

Recursion

Should now be comfortable with recursion:

• No harder than using a loop (whatever that is)

• Often much easier than a loop

– When processing a tree (e.g., evaluate an arithmetic

expression)

– Examples like appending lists

– Avoids mutation even for local variables

• Now:

– How to reason about efficiency of recursion

– The importance of tail recursion

– Using an accumulator to achieve tail recursion

– [No new language features here]

Winter 2013 9 CSE341: Programming Languages

Call-stacks

While a program runs, there is a call stack of function calls that

have started but not yet returned

– Calling a function f pushes an instance of f on the stack

– When a call to f finishes, it is popped from the stack

These stack-frames store information like the value of local

variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same

function

Winter 2013 10 CSE341: Programming Languages

Example

Winter 2013 11 CSE341: Programming Languages

fun fact n = if n=0 then 1 else n*fact(n-1)

val x = fact 3

fact 3: 3*_ fact 3

fact 2

fact 3: 3*_ fact 3: 3*_

fact 2: 2*_

fact 1

fact 2: 2*_

fact 1: 1*_

fact 0

fact 3: 3*_

fact 2: 2*_

fact 1: 1*_

fact 0: 1

fact 3: 3*_

fact 2: 2*_

fact 1: 1*1

fact 3: 3*_

fact 2: 2*1

fact 3: 3*2

Example Revised

fun fact n =

 let fun aux(n,acc) =

 if n=0

 then acc

 else aux(n-1,acc*n)

 in

 aux(n,1)

 end

val x = fact 3

Still recursive, more complicated, but the result of recursive

calls is the result for the caller (no remaining multiplication)

Winter 2013 CSE341: Programming Languages 12

The call-stacks

Winter 2013 13 CSE341: Programming Languages

fact 3: _ fact 3

aux(3,1)

fact 3: _

aux(3,1):_

aux(2,3)

fact 3: _

aux(3,1):_

aux(2,3):_

aux(1,6)

fact 3: _

aux(3,1):_

aux(2,3):_

aux(1,6):_

aux(0,6)

fact 3: _

aux(3,1):_

aux(2,3):_

aux(1,6):_

aux(0,6):6

fact 3: _

aux(3,1):_

aux(2,3):_

aux(1,6):6
Etc…

fact 3: _

aux(3,1):_

aux(2,3):6

An optimization

It is unnecessary to keep around a stack-frame just so it can get a

callee’s result and return it without any further evaluation

ML recognizes these tail calls in the compiler and treats them

differently:

– Pop the caller before the call, allowing callee to reuse the

same stack space

– (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do

tail-call optimization

Winter 2013 14 CSE341: Programming Languages

What really happens

Winter 2013 15 CSE341: Programming Languages

fun fact n =

 let fun aux(n,acc) =

 if n=0

 then acc

 else aux(n-1,acc*n)

 in

 aux(n,1)

 end

val x = fact 3

fact 3 aux(3,1) aux(2,3) aux(1,6) aux(0,6)

Moral of tail recursion

• Where reasonably elegant, feasible, and important, rewriting

functions to be tail-recursive can be much more efficient

– Tail-recursive: recursive calls are tail-calls

• There is a methodology that can often guide this transformation:

– Create a helper function that takes an accumulator

– Old base case becomes initial accumulator

– New base case becomes final accumulator

Winter 2013 16 CSE341: Programming Languages

Methodology already seen

Winter 2013 17 CSE341: Programming Languages

fun fact n =

 let fun aux(n,acc) =

 if n=0

 then acc

 else aux(n-1,acc*n)

 in

 aux(n,1)

 end

val x = fact 3

fact 3 aux(3,1) aux(2,3) aux(1,6) aux(0,6)

Another example

Winter 2013 18 CSE341: Programming Languages

fun sum xs =

 case xs of

 [] => 0

 | x::xs’ => x + sum xs’

 fun sum xs =

 let fun aux(xs,acc) =

 case xs of

 [] => acc

 | x::xs’ => aux(xs’,x+acc)

 in

 aux(xs,0)

 end

And another

Winter 2013 19 CSE341: Programming Languages

fun rev xs =

 case xs of

 [] => []

 | x::xs’ => (rev xs’) @ [x]

 fun rev xs =

 let fun aux(xs,acc) =

 case xs of

 [] => acc

 | x::xs’ => aux(xs’,x::acc)

 in

 aux(xs,[])

 end

Actually much better

• For fact and sum, tail-recursion is faster but both ways linear time

• Non-tail recursive rev is quadratic because each recursive call

uses append, which must traverse the first list

– And 1+2+…+(length-1) is almost length*length/2

– Moral: beware list-append, especially within outer recursion

• Cons constant-time (and fast), so accumulator version much better

Winter 2013 20 CSE341: Programming Languages

fun rev xs =

 case xs of

 [] => []

 | x::xs’ => (rev xs’) @ [x]

Always tail-recursive?

There are certainly cases where recursive functions cannot be

evaluated in a constant amount of space

Most obvious examples are functions that process trees

In these cases, the natural recursive approach is the way to go

– You could get one recursive call to be a tail call, but rarely

worth the complication

Also beware the wrath of premature optimization

– Favor clear, concise code

– But do use less space if inputs may be large

Winter 2013 21 CSE341: Programming Languages

What is a tail-call?

The “nothing left for caller to do” intuition usually suffices

– If the result of f x is the “immediate result” for the

enclosing function body, then f x is a tail call

But we can define “tail position” recursively

– Then a “tail call” is a function call in “tail position”

…

Winter 2013 22 CSE341: Programming Languages

Precise definition

A tail call is a function call in tail position

• If an expression is not in tail position, then no subexpressions are

• In fun f p = e, the body e is in tail position

• If if e1 then e2 else e3 is in tail position, then e2 and e3

are in tail position (but e1 is not). (Similar for case-expressions)

• If let b1 … bn in e end is in tail position, then e is in tail

position (but no binding expressions are)

• Function-call arguments e1 e2 are not in tail position

• …

Winter 2013 23 CSE341: Programming Languages

