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Nested patterns 

• We can nest patterns as deep as we want 

– Just like we can nest expressions as deep as we want 

– Often avoids hard-to-read, wordy nested case expressions 
 

• So the full meaning of pattern-matching is to compare a pattern 

against a value for the “same shape” and bind variables to the 

“right parts” 

– More precise recursive definition coming after examples 
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Useful example: zip/unzip 3 lists 
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fun zip3 lists =  

   case lists of  

        ([],[],[]) => [] 

      | (hd1::tl1,hd2::tl2,hd3::tl3) =>  

             (hd1,hd2,hd3)::zip3(tl1,tl2,tl3) 

      | _ => raise ListLengthMismatch 

 

fun unzip3 triples =  

   case triples of  

        [] => ([],[],[]) 

      | (a,b,c)::tl =>  

          let val (l1, l2, l3) = unzip3 tl  

          in 

              (a::l1,b::l2,c::l3)  

          end 

 

 More examples to come (see code files) 



Style 

• Nested patterns can lead to very elegant, concise code 

– Avoid nested case expressions if nested patterns are simpler 

and avoid unnecessary branches or let-expressions 

• Example: unzip3 and nondecreasing 

– A common idiom is matching against a tuple of datatypes to 

compare them  

• Examples: zip3 and multsign 

 

• Wildcards are good style: use them instead of variables when 

you do not need the data  

– Examples: len and multsign 
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(Most of) the full definition 

The semantics for pattern-matching takes a pattern p and a value v 

and decides (1) does it match and (2) if so, what variable bindings 

are introduced. 

 

Since patterns can nest, the definition is elegantly recursive, with a 

separate rule for each kind of pattern.  Some of the rules: 

• If p is a variable x, the match succeeds and x is bound to v 

• If p is _, the match succeeds and no bindings are introduced 

• If p is (p1,…,pn) and v is (v1,…,vn), the match succeeds if and 

only if p1 matches v1, …, pn matches vn.  The bindings are the 

union of all bindings from the submatches 

• If p is C p1, the match succeeds if v is C v1 (i.e., the same 

constructor) and p1 matches v1.  The bindings are the bindings 

from the submatch. 

• … (there are several other similar forms of patterns) 
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Examples 

 

– Pattern a::b::c::d matches all lists with >= 3 elements 

 

– Pattern a::b::c::[] matches all lists with 3 elements 

 

– Pattern ((a,b),(c,d))::e matches all non-empty lists of 

pairs of pairs 
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Exceptions 

An exception binding introduces a new kind of exception 

 

 

 

The raise primitive raises (a.k.a. throws) an exception 

 

 

 

A handle expression can handle (a.k.a. catch) an exception 

– If doesn’t match, exception continues to propagate 
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exception MyFirstException 

exception MySecondException of int * int 

raise MyFirstException 

raise (MySecondException(7,9)) 

e1 handle MyFirstException => e2 

e1 handle MySecondException(x,y) => e2 



Actually… 

Exceptions are a lot like datatype constructors… 

 

• Declaring an exception adds a constructor for type exn 

 

• Can pass values of exn anywhere (e.g., function arguments) 

– Not too common to do this but can be useful 

 

• Handle can have multiple branches with patterns for type exn 
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Recursion 

Should now be comfortable with recursion: 
 

• No harder than using a loop (whatever that is ) 
 

• Often much easier than a loop  

– When processing a tree (e.g., evaluate an arithmetic 

expression) 

– Examples like appending lists 

– Avoids mutation even for local variables 
 

• Now:  

– How to reason about efficiency of recursion 

– The importance of tail recursion 

– Using an accumulator  to achieve tail recursion 

– [No new language features here] 
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Call-stacks 

While a program runs, there is a call stack of function calls that 

have started but not yet returned 

– Calling a function f pushes an instance of f on the stack 

– When a call to f finishes, it is popped from the stack 

 

These stack-frames store information like the value of local 

variables and “what is left to do” in the function 

 

Due to recursion, multiple stack-frames may be calls to the same 

function 
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Example 
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fun fact n = if n=0 then 1 else n*fact(n-1) 
 

val x = fact 3 

fact 3: 3*_  fact 3 

fact 2 

fact 3: 3*_  fact 3: 3*_  

fact 2: 2*_  

fact 1 

fact 2: 2*_  

fact 1: 1*_  

fact 0 

fact 3: 3*_  

fact 2: 2*_  

fact 1: 1*_  

fact 0: 1 

fact 3: 3*_  

fact 2: 2*_  

fact 1: 1*1  

fact 3: 3*_  

fact 2: 2*1  

fact 3: 3*2  



Example Revised 

fun fact n =  

    let fun aux(n,acc) =  

           if n=0  

           then acc  

           else aux(n-1,acc*n) 

    in  

       aux(n,1)  

    end 
 

val x = fact 3 

Still recursive, more complicated, but the result of recursive 

calls is the result for the caller (no remaining multiplication) 
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The call-stacks 
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fact 3: _  fact 3 

aux(3,1) 

fact 3: _  

aux(3,1):_  

aux(2,3) 

fact 3: _  

aux(3,1):_  

aux(2,3):_ 

aux(1,6) 

fact 3: _  

aux(3,1):_  

aux(2,3):_ 

aux(1,6):_ 

aux(0,6) 

fact 3: _  

aux(3,1):_  

aux(2,3):_ 

aux(1,6):_ 

aux(0,6):6 

fact 3: _  

aux(3,1):_  

aux(2,3):_ 

aux(1,6):6 
Etc… 

fact 3: _  

aux(3,1):_  

aux(2,3):6 



An optimization 

It is unnecessary to keep around a stack-frame just so it can get a 

callee’s result and return it without any further evaluation 

 

ML recognizes these tail calls  in the compiler and treats them 

differently: 

– Pop the caller before the call, allowing callee to reuse the 

same stack space 

– (Along with other optimizations,) as efficient as a loop 

 

Reasonable to assume all functional-language implementations do 

tail-call optimization 
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What really happens 
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fun fact n =  

    let fun aux(n,acc) =  

           if n=0  

           then acc  

           else aux(n-1,acc*n) 

    in  

       aux(n,1)  

    end 
 

val x = fact 3 

fact 3 aux(3,1) aux(2,3) aux(1,6) aux(0,6) 



Moral of tail recursion 

• Where reasonably elegant, feasible, and important, rewriting 

functions to be tail-recursive can be much more efficient 

– Tail-recursive: recursive calls are tail-calls 

 

• There is a methodology that can often guide this transformation: 

– Create a helper function that takes an accumulator 

– Old base case becomes initial accumulator 

– New base case becomes final accumulator 
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Methodology already seen 
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fun fact n =  

    let fun aux(n,acc) =  

           if n=0  

           then acc  

           else aux(n-1,acc*n) 

    in  

       aux(n,1)  

    end 
 

val x = fact 3 

fact 3 aux(3,1) aux(2,3) aux(1,6) aux(0,6) 



Another example 
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fun sum xs = 

   case xs of 

       [] => 0 

    | x::xs’ => x + sum xs’ 

 

 

 fun sum xs =  

    let fun aux(xs,acc) =  

           case xs of 

              [] => acc 

          | x::xs’ => aux(xs’,x+acc) 

    in  

       aux(xs,0)  

    end 

 

 

 



And another 
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fun rev xs = 

   case xs of 

       [] => [] 

    | x::xs’ => (rev xs’) @ [x] 

 

 

 fun rev xs =  

    let fun aux(xs,acc) =  

           case xs of 

              [] => acc 

          | x::xs’ => aux(xs’,x::acc) 

    in  

       aux(xs,[])  

    end 

 

 

 



Actually much better 

• For fact and sum, tail-recursion is faster but both ways linear time 

• Non-tail recursive rev is quadratic because each recursive call 

uses append, which must traverse the first list 

– And 1+2+…+(length-1) is almost length*length/2 

– Moral: beware list-append, especially within outer recursion 

• Cons constant-time (and fast), so accumulator version much better 
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fun rev xs = 

   case xs of 

        [] => [] 

    | x::xs’ => (rev xs’) @ [x] 

 

 

 



Always tail-recursive? 

There are certainly cases where recursive functions cannot be 

evaluated in a constant amount of space 

 

Most obvious examples are functions that process trees 

 

In these cases, the natural recursive approach is the way to go 

– You could get one recursive call to be a tail call, but rarely 

worth the complication 

 

Also beware the wrath of premature optimization 

– Favor clear, concise code  

– But do use less space if inputs may be large 
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What is a tail-call? 

 

The “nothing left for caller to do” intuition usually suffices 

– If the result of f x is the “immediate result” for the 

enclosing function body, then f x is a tail call 

 

But we can define “tail position” recursively 

– Then a “tail call” is a function call in “tail position” 

 

… 
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Precise definition 

 

A tail call  is a function call in tail position 

 

• If an expression is not in tail position, then no subexpressions are 

 

• In fun f p = e, the body e is in tail position 

• If if e1 then e2 else e3 is in tail position, then e2 and e3 

are in tail position (but e1 is not).  (Similar for case-expressions) 

• If let b1 … bn in e end is in tail position, then e is in tail 

position (but no binding expressions are) 

• Function-call arguments e1 e2 are not in tail position 

• … 
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