
CSE341: Programming Languages 
 

Lecture 5 

More Datatypes and Pattern-Matching 

Dan Grossman 

Winter 2013 



Useful examples 

Let’s fix the fact that our only example datatype so far was silly… 

 

• Enumerations, including carrying other data 

 

 

 

 

• Alternate ways of identifying real-world things/people 

 

Winter 2013 2 CSE341: Programming Languages 

datatype suit = Club | Diamond | Heart | Spade 

datatype card_value = Jack | Queen | King  

                    | Ace | Num of int 

datatype id = StudentNum of int  

            | Name of string  

                      * (string option)  

                      * string 



Don’t do this 

Unfortunately, bad training and languages that make one-of types 

inconvenient lead to common bad style where each-of types are 

used where one-of types are the right tool 

 

 

 

 

 

 
 

• Approach gives up all the benefits of the language enforcing 

every value is one variant, you don’t forget branches, etc. 
 

• And it makes it less clear what you are doing 

 

 
Winter 2013 3 CSE341: Programming Languages 

(* use the studen_num and ignore other 

fields unless the student_num is ~1 *) 

{ student_num : int,  

  first       : string, 

  middle      : string option,  

  last        : string } 

 



That said… 

But if instead, the point is that every “person” in your program has a 

name and maybe a student number, then each-of is the way to go: 

Winter 2013 4 CSE341: Programming Languages 

{ student_num : int option,  

  first       : string, 

  middle      : string option,  

  last        : string } 

 



Expression Trees 

A more exciting (?) example of a datatype, using self-reference 

 

 

 

 
 

An expression in ML of type exp:  

 
 

How to picture the resulting value in your head:  

Winter 2013 5 CSE341: Programming Languages 

datatype exp = Constant of int 

             | Negate   of exp 

             | Add      of exp * exp 

             | Multiply of exp * exp 

 Add (Constant (10+9), Negate (Constant 4)) 

Add 

Constant 

19 

Negate 

Constant 

4 



Recursion 

Not surprising:  

Functions over recursive datatypes are usually recursive 

Winter 2013 6 CSE341: Programming Languages 

fun eval e =  

   case e of  

        Constant i      => i 

      | Negate e2       => ~ (eval e2) 

      | Add(e1,e2)      => (eval e1) + (eval e2) 

      | Multiply(e1,e2) => (eval e1) * (eval e2) 

 



Putting it together 

Let’s define  max_constant : exp -> int 

 

Good example of combining several topics as we program: 

– Case expressions 

– Local helper functions 

– Avoiding repeated recursion 

– Simpler solution by using library functions 

 

See the .sml file… 

Winter 2013 7 CSE341: Programming Languages 

datatype exp = Constant of int 

             | Negate   of exp 

             | Add      of exp * exp 

             | Multiply of exp * exp 



Careful definitions 

 

When a language construct is “new and strange,” there is more 

reason to define the evaluation rules precisely… 

 

… so let’s review datatype bindings and case expressions “so far” 

– Extensions to come but won’t invalidate the “so far” 

Winter 2013 8 CSE341: Programming Languages 



Datatype bindings 

 

 

Adds type t and constructors Ci of type ti->t  

– Ci v is a value, i.e., the result “includes the tag” 

 

Omit “of t” for constructors that are just tags, no underlying data 

– Such a Ci is a value of type t 

 

Given an expression of type t, use case expressions to: 

– See which variant (tag) it has 

– Extract underlying data once you know which variant 

Winter 2013 9 CSE341: Programming Languages 

datatype t = C1 of t1 | C2 of t2 | … | Cn of tn 



Datatype bindings 

• As usual, can use a case expressions anywhere an expression goes 

– Does not need to be whole function body, but often is 

 

• Evaluate e to a value, call it v 

 

• If pi is the first pattern to match v, then result is evaluation of ei in 

environment “extended by the match” 

 

• Pattern Ci(x1,…,xn) matches value Ci(v1,…,vn) and extends 

the environment with x1 to v1 … xn to vn 

– For “no data” constructors, pattern Ci matches value Ci 

Winter 2013 10 CSE341: Programming Languages 

case e of p1 => e1 | p2 => e2 | … | pn => en 



Recursive datatypes 

Datatype bindings can describe recursive structures 

– Have seen arithmetic expressions 

– Now, linked lists: 

Winter 2013 11 CSE341: Programming Languages 

datatype my_int_list = Empty  

                     | Cons of int * my_int_list 

 

val x = Cons(4,Cons(23,Cons(2008,Empty))) 

 

fun append_my_list (xs,ys) = 

   case xs of 

       Empty => ys 

    | Cons(x,xs’) => Cons(x, append_my_list(xs’,ys)) 



Options are datatypes 

Options are just a predefined datatype binding 

– NONE and SOME are constructors, not just functions 

– So use pattern-matching not isSome and valOf 

Winter 2013 12 CSE341: Programming Languages 

fun inc_or_zero intoption = 

   case intoption of 

        NONE => 0 

    | SOME i => i+1 



Lists are datatypes 

Do not use hd, tl, or null either 

– [] and :: are constructors too  

– (strange syntax, particularly infix) 

Winter 2013 13 CSE341: Programming Languages 

fun sum_list xs = 

   case xs of 

        [] => 0 

    | x::xs’ => x + sum_list xs’ 

 

fun append (xs,ys) = 

   case xs of 

       [] => ys 

    | x::xs’ => x :: append(xs’,ys) 

 



Why pattern-matching 

• Pattern-matching is better for options and lists for the same 

reasons as for all datatypes 

– No missing cases, no exceptions for wrong variant, etc. 

 

• We just learned the other way first for pedagogy 

– Do not use isSome, valOf, null, hd, tl on Homework 2 

 

• So why are null, tl, etc. predefined? 

– For passing as arguments to other functions (next week) 

– Because sometimes they are convenient 

– But not a big deal: could define them yourself 

Winter 2013 14 CSE341: Programming Languages 



Excitement ahead… 

Learn some deep truths about “what is really going on” 

– Using much more syntactic sugar than we realized 

 

• Every val-binding and function-binding uses pattern-matching 

 

• Every function in ML takes exactly one argument 

 

First need to extend our definition of pattern-matching… 

Winter 2013 15 CSE341: Programming Languages 



Each-of types 

So far have used pattern-matching for one of types because we 

needed a way to access the values 

 

Pattern matching also works for records and tuples: 

– The pattern (x1,…,xn)  

  matches the tuple value (v1,…,vn) 

– The pattern {f1=x1, …, fn=xn} 

  matches the record value {f1=v1, …, fn=vn} 

  (and fields can be reordered) 

Winter 2013 16 CSE341: Programming Languages 



Example 

This is poor style, but based on what I told you so far, the only way 

to use patterns 

– Works but poor style to have one-branch cases 

Winter 2013 17 CSE341: Programming Languages 

fun sum_triple triple = 

   case triple of 

    (x, y, z) => x + y + z 

 

fun full_name r = 

   case r of 

    {first=x, middle=y, last=z} =>  

         x ^ " " ^ y ^ " " ^ z 



Val-binding patterns 

• New feature: A val-binding can use a pattern, not just a variable 

– (Turns out variables are just one kind of pattern, so we just 

told you a half-truth in lecture 1) 

 

 

• Great for getting (all) pieces out of an each-of type 

– Can also get only parts out (not shown here) 

 

• Usually poor style to put a constructor pattern in a val-binding 

– Tests for the one variant and raises an exception if a 
different one is there (like hd, tl, and valOf) 

Winter 2013 18 CSE341: Programming Languages 

val p = e 



Better example 

This is okay style 

– Though we will improve it again next 

– Semantically identical to one-branch case expressions 

Winter 2013 19 CSE341: Programming Languages 

fun sum_triple triple = 

   let val (x, y, z) = triple  

   in 

       x + y + z 

   end 

 

fun full_name r = 

   let val {first=x, middle=y, last=z} = r  

   in 

       x ^ " " ^ y ^ " " ^ z 

   end 



Function-argument patterns 

A function argument can also be a pattern 

– Match against the argument in a function call 

 

 

Examples (great style!): 

 

Winter 2013 20 CSE341: Programming Languages 

fun f p = e 

fun sum_triple (x, y, z) = 

    x + y + z 

 

fun full_name {first=x, middle=y, last=z} = 

    x ^ " " ^ y ^ " " ^ z 

 



A new way to go 

• For Homework 2: 

– Do not use the # character 

– Do not need to write down any explicit types 

 

Winter 2013 21 CSE341: Programming Languages 



Hmm 

A function that takes one triple of type int*int*int and returns 

an int that is their sum: 

Winter 2013 22 CSE341: Programming Languages 

A function that takes three int arguments and returns                

an int that is their sum 

fun sum_triple (x, y, z) = 

    x + y + z 

fun sum_triple (x, y, z) = 

    x + y + z 

See the difference? (Me neither.)  



The truth about functions 

• In ML, every function takes exactly one argument (*) 

 

• What we call multi-argument functions are just functions taking 

one tuple argument, implemented with a tuple pattern in the 

function binding 

– Elegant and flexible language design 

 

• Enables cute and useful things you cannot do in Java, e.g.,  

 

 

 

 

 

* “Zero arguments” is the unit pattern () matching the unit value () 

Winter 2013 23 CSE341: Programming Languages 

fun rotate_left (x, y, z) = (y, z, x) 

fun rotate_right t = rotate_left(rotate_left t) 

 


