Function definitions

Functions: the most important building block in the whole course
 – Like Java methods, have arguments and result
 – But no classes, this, return, etc.

Example function binding:

\[
\text{fun pow \((x : \text{int}, y : \text{int}) = \)}
\]

\[
\text{if } y = 0 \text{ then } 1 \text{ else } x \times \text{pow}(x, y-1) \]

Note: The body includes a (recursive) function call: \text{pow}(x, y-1)

Example, extended

\[
\text{fun pow \((x : \text{int}, y : \text{int}) = \)}
\]

\[
\text{if } y = 0 \text{ then } 1 \text{ else } x \times \text{pow}(x, y-1) \]

\[
\text{fun cube \((x : \text{int}) = \)}
\]

\[
\text{pow}(x, 3) \]

\[
\text{val sixtyfour = cube 4} \]

\[
\text{val fortytwo = pow(2, 2+2) + pow(4, 2) + cube(2) + 2} \]

Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax
 – Example: \text{int * int -> int}
 – In expressions, * is multiplication: \text{x * pow(x, y-1)}

• The use of * in type syntax is not multiplication
 – Example: \text{int * int -> int}

• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for \text{mutual recursion} (later)

Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions

Function bindings: 3 questions

• Syntax: \text{fun x0 \((x1 : t1, \ldots, xn : tn) = e \)}
 – (Will generalize in later lecture)

• Evaluation: A \text{function is a value!} (No evaluation yet)
 – Adds \text{x0} to environment so later expressions can call it
 – (Function-call semantics will also allow recursion)

• Type-checking:
 – Adds binding \text{x0 : (t1 * \ldots * tn) -> t if:}
 – Can type-check body \text{e} to have type \text{t} in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • \text{x1 : t1, \ldots, xn : tn} (arguments with their types)
 • \text{x0 : (t1 * \ldots * tn) \rightarrow t} (for recursion)
More on type-checking

- New kind of type: \((t_1 \times \ldots \times t_n) \rightarrow t\)
 - Result type on right
 - The overall type-checking result is to give \(x_0\) this type in rest of program (unlike Java, not for earlier bindings)
 - Arguments can be used only in \(e\) (unsurprising)
- Because evaluation of a call to \(x_0\) will return result of evaluating \(e\), the return type of \(x_0\) is the type of \(e\)
- More magic after hw1: Later can omit argument types too

Function Calls

A new kind of expression: 3 questions

Syntax: \(e_0(e_1,\ldots,e_n)\)
- (Will generalize later)
- Parentheses optional if there is exactly one argument

Type-checking:
- If:
 - \(e_0\) has some type \((t_1 \times \ldots \times t_n) \rightarrow t\)
 - \(e_1\) has type \(t_1\), ..., \(e_n\) has type \(t_n\)
Then:
- \(e_0(e_1,\ldots,e_n)\) has type \(t\)

Example: \(\text{pow}(x,y-1)\) in previous example has type \(\text{int}\)

Function-calls continued

\[e_0(e_1,\ldots,e_n) \]

Evaluation:

1. (Under current dynamic environment,) evaluate \(e_0\) to a function \(\text{fun } x_0 (x_1 : t_1, \ldots, x_n : t_n) = e\)
 - Since call type-checked, result will be a function
2. (Under current dynamic environment,) evaluate arguments to values \(v_1, \ldots, v_n\)
3. Result is evaluation of \(e\) in an environment extended to map \(x_1 \rightarrow v_1, \ldots, x_n \rightarrow v_n\)
 - (“An environment” is actually the environment where the function was defined, and includes \(x_0\) for recursion)

Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
- Now ways to build up data with multiple parts
 - Now ways to build up data with multiple parts
 - This is essential
 - Java examples: classes with fields, arrays

Now:
- **Tuples:** fixed “number of pieces” that may have different types
 - Lists: any “number of pieces” that all have the same type
Later:
- Other more general ways to create compound data

Pairs (2-tuples)

Need a way to \textit{build} pairs and a way to \textit{access} the pieces

Build:

- Syntax: \((e_1,e_2)\)
- Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1,v_2)\)
 - A pair of values is a value
- Type-checking: If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a \times t_b\)
 - A new kind of type

Access:

- Syntax: \(#_1 e\) and \(#_2 e\)
- Evaluation: Evaluate \(e\) to a pair of values and return first or second piece
 - Example: If \(e\) is a variable \(x\), then look up \(x\) in environment
- Type-checking: If \(e\) has type \(t_a\times t_b\), then \(#_1 e\) has type \(t_a\) and \(#_2 e\) has type \(t_b\)
Examples

Functions can take and return pairs

```haskell
fun swap (pr : int * bool) = 
  (snd pr, fst pr)

fun sum_two_pairs (pr1 : int * int, pr2 : int * int) = 
  (fst pr1) + (snd pr1) + (fst pr2) + (snd pr2)

fun div_mod (x : int, y : int) = 
  (x div y, x mod y)

fun sort_pair (pr : int * int) = 
  if (fst pr) < (snd pr) 
    then pr
    else (snd pr, fst pr)
```

Tuples

Actually, you can have tuples with more than two parts

- A new feature: a generalization of pairs
 - (e1, e2, ..., en)
 - ta * tb * ... * tn
 - #1 e, #2 e, #3 e, ...

Homework 1 uses triples of type int * int * int a lot

Nesting

Pairs and tuples can be nested however you want
- Not a new feature: implied by the syntax and semantics

```haskell
val x1 = (7, (true, 9)) (* int * (bool * int) *)
val x2 = #1 (#2 x1)   (* bool *)
val x3 = (#2 x1)      (* bool * int *)
val x4 = ((3, 5), ((4, 8), (0, 0)))
          (* (int * int) * ((int * int) * (int * int)) *)
```

Lists

- Despite nested tuples, the type of a variable still "commits" to a particular "amount" of data

In contrast, a list:
- Can have any number of elements
- But all list elements have the same type

Need ways to build lists and access the pieces...

Building Lists

- The empty list is a value:
 - []

- In general, a list of values is a value; elements separated by commas:
 - [v1, v2, ..., vn]

- If e1 evaluates to v and e2 evaluates to a list [v1, ..., vn], then e1 : e2 evaluates to [v, ..., vn]
 - e1 : e2 (* pronounced "cons" *)

Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- null e evaluates to true if and only if e evaluates to []

- If e evaluates to [v1, v2, ..., vn] then hd e evaluates to v1
 - (raise exception if e evaluates to [])

- If e evaluates to [v1, v2, ..., vn] then tl e evaluates to [v2, ..., vn]
 - (raise exception if e evaluates to [])
 - Notice result is a list
Type-checking list operations

Lots of new types: For any type t, the type t list describes lists where all elements have type t

- Examples: int list bool list int list list
 (int * int) list (int list * int) list

- So [] can have type t list list for any type
 - SML uses type 'a list to indicate this ("quote a" or "alpha")
- For $e_1::e_2$ to type-check, we need a t such that e_1 has type t and e_2 has type t list. Then the result type is t list

- null : 'a list -> bool
- hd : 'a list -> 'a
- tl : 'a list -> 'a list

Example list functions

fun sum_list (xs : int list) =
 if null xs
 then 0
 else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =
 if x=0
 then []
 else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =
 if null xs
 then ys
 else hd (xs) :: append (tl(xs), ys)

Recursion again

Functions over lists are usually recursive
- Only way to "get to all the elements"
- What should the answer be for the empty list?
- What should the answer be for a non-empty list?
 - Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
- You create a list out of smaller lists

Lists of pairs

Processing lists of pairs requires no new features. Examples:

fun sum_pair_list (xs : (int*int) list) =
 if null xs
 then 0
 else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) =
 if null xs
 then []
 else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) =
 if null xs
 then []
 else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) =
 (sum_list (firsts xs)) + (sum_list (seconds xs))