CSE341: Programming Languages

Lecture 2
Functions, Pairs, Lists

Dan Grossman
Winter 2013
Function definitions

Functions: the most important building block in the whole course
– Like Java methods, have arguments and result
– But no classes, this, return, etc.

Example function binding:

\[
\begin{align*}
(* \text{ Note: correct only if } y &\geq 0 *) \\
\text{fun pow (x : int, y : int) =} \\
& \text{if } y = 0 \\
& \quad \text{then 1} \\
& \quad \text{else } x \times \text{pow}(x, y-1)
\end{align*}
\]

Note: The body includes a (recursive) function call: \text{pow}(x, y-1)
Example, extended

fun pow \((x : \text{int}, y : \text{int}) = \)
 if \(y = 0 \)
 then 1
 else \(x \times \text{pow}(x, y-1) \)

fun cube \((x : \text{int}) = \)
 \(\text{pow}(x, 3) \)

val sixtyfour = cube 4

val fortytwo = \(\text{pow}(2, 2+2) + \text{pow}(4, 2) + \text{cube}(2) + 2 \)
Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax

• The use of * in type syntax is not multiplication
 – Example: \texttt{int * int -> int}
 – In expressions, * is multiplication: \texttt{x * pow(x, y-1)}

• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for \textit{mutual recursion} (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions
Function bindings: 3 questions

• Syntax:
 \[
 \text{fun } x_0 \ (x_1 : t_1, \ldots, x_n : t_n) = e
 \]
 – (Will generalize in later lecture)

• Evaluation: A function is a value! (No evaluation yet)
 – Adds \(x_0 \) to environment so \(\text{later} \) expressions can \text{call} it
 – (Function-call semantics will also allow recursion)

• Type-checking:
 – Adds binding \(x_0 : (t_1 \ast \ldots \ast t_n) \rightarrow t \) if:
 – Can type-check body \(e \) to have type \(t \) in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • \(x_1 : t_1, \ldots, x_n : t_n \) (arguments with their types)
 • \(x_0 : (t_1 \ast \ldots \ast t_n) \rightarrow t \) (for recursion)
More on type-checking

```plaintext
fun x0 (x1 : t1, … , xn : tn) = e
```

• New kind of type: \((t_1 \times \ldots \times t_n) \rightarrow t\)
 - Result type on right
 - The overall type-checking result is to give \(x_0\) this type in rest of program (unlike Java, not for earlier bindings)
 - Arguments can be used only in \(e\) (unsurprising)

• Because evaluation of a call to \(x_0\) will return result of evaluating \(e\), the return type of \(x_0\) is the type of \(e\)

• The type-checker “magically” figures out \(t\) if such a \(t\) exists
 - Later lecture: Requires some cleverness due to recursion
 - More magic after hw1: Later can omit argument types too
Function Calls

A new kind of expression: 3 questions

Syntax: \[e_0 (e_1, \ldots, e_n) \]
- (Will generalize later)
- Parentheses optional if there is exactly one argument

Type-checking:
If:
- \(e_0 \) has some type \((t_1 \times \ldots \times t_n) \rightarrow t \)
- \(e_1 \) has type \(t_1 \), \ldots, \(e_n \) has type \(t_n \)
Then:
- \(e_0 (e_1, \ldots, e_n) \) has type \(t \)
Example: \(\text{pow}(x, y-1) \) in previous example has type \(\text{int} \)
Function-calls continued

\[e_0(e_1, \ldots, e_n) \]

Evaluation:

1. (Under current dynamic environment,) evaluate \(e_0 \) to a function \(\text{fun } x_0 \ (x_1 : t_1, \ldots, x_n : t_n) = e \)

 – Since call type-checked, result will be a function

2. (Under current dynamic environment,) evaluate arguments to values \(v_1, \ldots, v_n \)

3. Result is evaluation of \(e \) in an environment extended to map \(x_1 \) to \(v_1 \), \(\ldots \), \(x_n \) to \(v_n \)

 – (“An environment” is actually the environment where the function was defined, and includes \(x_0 \) for recursion)
Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
 – Now ways to build up data with multiple parts
 – This is essential
 – Java examples: classes with fields, arrays

Now:
 – Tuples: fixed “number of pieces” that may have different types

Then:
 – Lists: any “number of pieces” that all have the same type

Later:
 – Other more general ways to create compound data
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Build:

- Syntax: \((e_1, e_2)\)

- Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1, v_2)\)
 - A pair of values is a value

- Type-checking: If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a \times t_b\)
 - A new kind of type
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Access:

- Syntax: \[\#1 \ e \ \text{and} \ \#2 \ e \]

- Evaluation: Evaluate \(e \) to a pair of values and return first or second piece
 - Example: If \(e \) is a variable \(x \), then look up \(x \) in environment

- Type-checking: If \(e \) has type \(ta * tb \), then \(\#1 \ e \) has type \(ta \) and \(\#2 \ e \) has type \(tb \)
Examples

Functions can take and return pairs

fun swap (pr : int*bool) =
 (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
 (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
 (x div y, x mod y)

fun sort_pair (pr : int*int) =
 if (#1 pr) < (#2 pr)
 then pr
 else (#2 pr, #1 pr)
Tuples

Actually, you can have *tuples* with more than two parts
- A new feature: a generalization of pairs

- \((e_1, e_2, \ldots, e_n)\)
- \(ta * tb * \ldots * tn\)
- \(#1 e, #2 e, #3 e, \ldots\)

Homework 1 uses triples of type \texttt{int*int*int} a lot
Nesting

Pairs and tuples can be nested however you want

– Not a new feature: implied by the syntax and semantics

```pascal
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1) (* bool *)
val x3 = (#2 x1) (* bool*int *)
val x4 = ((3,5),((4,8),(0,0)))
   (* (int*int)*((int*int)*(int*int)) *)
```
Lists

- Despite nested tuples, the type of a variable still “commits” to a particular “amount” of data

In contrast, a list:
 - Can have any number of elements
 - But all list elements have the same type

Need ways to build lists and access the pieces…
Building Lists

• The empty list is a value:

 \[
 []
 \]

• In general, a list of values is a value; elements separated by commas:

 \([v_1, v_2, \ldots, v_n]\)

• If \(e_1\) evaluates to \(v\) and \(e_2\) evaluates to a list \([v_1, \ldots, v_n]\), then \(e_1 :: e_2\) evaluates to \([v, \ldots, v_n]\)

\(e_1 :: e_2\) (* pronounced “cons” *)
Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- **null e** evaluates to true if and only if e evaluates to []

- If e evaluates to [v1,v2,…,vn] then **hd e** evaluates to v1
 - (raise exception if e evaluates to [])

- If e evaluates to [v1,v2,…,vn] then **tl e** evaluates to [v2,…,vn]
 - (raise exception if e evaluates to [])
 - Notice result is a list
Type-checking list operations

Lots of new types: For any type \(t \), the type \(t \text{ list} \) describes lists where all elements have type \(t \)

- Examples: \(\text{int list} \) \(\text{bool list} \) \(\text{int list list} \) \(\text{(int * int) list} \) \(\text{(int list * int) list} \)

• So \([\text{ }]\) can have type \(t \text{ list list} \) for any type
 - SML uses type 'a list to indicate this (“quote a” or “alpha”)
• For \(e_1::e_2 \) to type-check, we need a \(t \) such that \(e_1 \) has type \(t \) and \(e_2 \) has type \(t \text{ list} \). Then the result type is \(t \text{ list} \)
• \(\text{null} : 'a \text{ list} \rightarrow \text{bool} \)
• \(\text{hd} : 'a \text{ list} \rightarrow 'a \)
• \(\text{tl} : 'a \text{ list} \rightarrow 'a \text{ list} \)
Example list functions

```
fun sum_list (xs : int list) = 
  if null xs 
  then 0 
  else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) = 
  if x=0 
  then [] 
  else x :: countdown (x-1)

fun append (xs : int list, ys : int list) = 
  if null xs 
  then ys 
  else hd(xs) :: append(tl(xs), ys)
```
Recursion again

Functions over lists are usually recursive
 – Only way to “get to all the elements”
• What should the answer be for the empty list?
• What should the answer be for a non-empty list?
 – Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
 – You create a list out of smaller lists
Lists of pairs

Processing lists of pairs requires no new features. Examples:

```haskell
fun sum_pair_list (xs : (int*int) list) = 
  if null xs 
  then 0 
  else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) = 
  if null xs 
  then [] 
  else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) = 
  if null xs 
  then [] 
  else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) = 
  (sum_list (firsts xs)) + (sum_list (seconds xs))
```