CSE341: Programming Languages

Lecture 21
Dynamic Dispatch Precisely, and Manually in Racket

Dan Grossman
Winter 2013
Dynamic dispatch

Dynamic dispatch

– Also known as *late binding* or *virtual methods*

– Call `self.m2()` in method `m1` defined in class `C` can *resolve to* a method `m2` defined in a subclass of `C`

– Most unique characteristic of OOP

Need to define the semantics of *method lookup* as carefully as we defined *variable lookup* for our PLs
Review: variable lookup

Rules for “looking things up” is a key part of PL semantics

- ML: Look up *variables* in the appropriate environment
 - Lexical scope for closures
 - *Field names* (for records) are different: not variables

- Racket: Like ML plus *let, letrec*

- Ruby:
 - Local variables and blocks mostly like ML and Racket
 - But also have instance variables, class variables, methods
 (all more like record fields)
 - Look up in terms of *self*, which is special
Using `self`

- `self` maps to some “current” object
- Look up instance variable `@x` using object bound to `self`
- Look up class variables `@@x` using object bound to `self.class`
- Look up methods…
Ruby method lookup

The semantics for method calls also known as message sends

\[e_0 . m (e_1 , \ldots , e_n) \]

1. Evaluate \(e_0 , e_1 , \ldots , e_n \) to objects \(\text{obj}_0 , \text{obj}_1 , \ldots , \text{obj}_n \)
 - As usual, may involve looking up self, variables, fields, etc.
2. Let \(C \) be the class of \(\text{obj}_0 \) (every object has a class)
3. If \(m \) is defined in \(C \), pick that method, else recur with the superclass of \(C \) unless \(C \) is already Object
 - If no \(m \) is found, call method_missing instead
 • Definition of method_missing in Object raises an error
4. Evaluate body of method picked:
 - With formal arguments bound to \(\text{obj}_1 , \ldots , \text{obj}_n \)
 - With self bound to \(\text{obj}_0 \) -- this implements dynamic dispatch!

Note: Step (3) complicated by mixins: will revise definition later
Punch-line again

\[e_0.m(e_1, \ldots, e_n) \]

To implement dynamic dispatch, evaluate the method body with `self` mapping to the receiver (result of `e_0`)

- That way, any `self` calls in body of `m` use the receiver's class,
 - Not necessarily the class that defined `m`

- This much is the same in Ruby, Java, C#, Smalltalk, etc.
Comments on dynamic dispatch

• This is why `distFromOrigin2` worked in `PolarPoint`

• More complicated than the rules for closures
 – Have to treat `self` specially
 – May seem simpler only if you learned it first
 – Complicated does not necessarily mean inferior or superior
Static overloading

In Java/C#/C++, method-lookup rules are similar, but more complicated because > 1 methods in a class can have same name

- Java/C/C++: Overriding only when number/types of arguments the same
- Ruby: same-method-name always overriding

Pick the “best one” using the static (!) types of the arguments

- Complicated rules for “best”
- Type-checking error if there is no “best”

Relies fundamentally on type-checking rules

- Ruby has none
A simple example, part 1

In ML (and other languages), closures are closed.

```
fun even x = if x=0 then true else odd (x-1)
and odd x = if x=0 then false else even (x-1)
```

So we can shadow `odd`, but any call to the closure bound to `odd` above will “do what we expect”

- Does not matter if we shadow `even` or not

```
(* does not change odd – too bad; this would improve it *)
fun even x = (x mod 2)=0
```

```
(* does not change odd – good thing; this would break it *)
fun even x = false
```
A simple example, part 2

In Ruby (and other OOP languages), subclasses can change the behavior of methods they do not override

```ruby
class A
  def even x
    if x==0 then true else odd (x-1) end
  end
  def odd x
    if x==0 then false else even (x-1) end
  end
end
class B < A  # improves odd in B objects
  def even x ; x % 2 == 0 end
end
class C < A  # breaks odd in C objects
  def even x ; false end
end
```
The OOP trade-off

Any method that makes calls to overridable methods can have its behavior changed in subclasses even if it is not overridden
 – Maybe on purpose, maybe by mistake
 – Observable behavior includes calls-to-overridable methods

• So harder to reason about “the code you're looking at”
 – Can avoid by disallowing overriding
 • “private” or “final” methods

• So easier for subclasses to affect behavior without copying code
 – Provided method in superclass is not modified later
Manual dynamic dispatch

Now: Write Racket code with little more than pairs and functions that acts like objects with dynamic dispatch

Why do this?
- (Racket actually has classes and objects available)

- Demonstrates how one language's semantics is an idiom in another language
- Understand dynamic dispatch better by coding it up
 - Roughly how an interpreter/compiler might

Analogy: Earlier optional material encoding higher-order functions using objects and explicit environments
Our approach

Many ways to do it; our code does this:

– An “object” has a list of field pairs and a list of method pairs

 \[
 \text{(struct obj (fields methods))}
 \]

– Field-list element example:

 \[
 \text{(mcons 'x 17)}
 \]

– Method-list element example:

 \[
 \text{(cons 'get-x (lambda (self args) ...))}
 \]

Notes:

• Lists sufficient but not efficient
• Not class-based: object has a list of methods, not a class that has a list of methods [could do it that way instead]
• Key trick is lambdas taking an extra self argument
 – All “regular” arguments put in a list args for simplicity
A point object bound to \mathbf{x}

\[
\begin{align*}
\text{'x} & \quad -4 \\
m\text{car} & \quad m\text{cdr} \\
\text{car} & \quad \text{cdr} \\
\end{align*}
\begin{align*}
\text{'y} & \quad 0 \\
m\text{car} & \quad m\text{cdr} \\
\text{car} & \quad \text{cdr} \\
\end{align*}
\]

fields, methods

\[\lambda(\text{self} \ \text{args})\ldots\]

\[\lambda(\text{self} \ \text{args})\ldots\]

\[\lambda(\text{self} \ \text{args})\ldots\]
Key helper functions

Now define plain Racket functions to get field, set field, call method

```
(define (assoc-m v xs)
  ...) ; assoc for list of mutable pairs

(define (get obj fld)
  (let ([pr (assoc-m fld (obj-fields obj))])
    (if pr (mcdr pr) (error ...))))

(define (set obj fld v)
  (let ([pr (assoc-m fld (obj-fields obj))])
    (if pr (set-mcdr! pr v) (error ...))))

(define (send obj msg . args)
  (let ([pr (assoc msg (obj-methods obj))])
    (if pr ((cdr pr) obj args) (error ...))))
```
(send x 'distToOrigin)

Evaluate body of \(\lambda(\text{self args}) \ldots \) with self bound to entire object (and args bound to ' ())
Constructing points

- Plain-old Racket function can take initial field values and build a point object
 - Use functions get, set, and send on result and in “methods”
 - Call to self: (send self 'm ...)
 - Method arguments in args list

```
(define (make-point _x _y)
  (obj
   (list (mcons 'x _x)
          (mcons 'y _y))
   (list (cons 'get-x (λ(self args)(get self 'x)))
         (cons 'get-y (λ(self args)(get self 'y)))
         (cons 'set-x (λ(self args)(...)))
         (cons 'set-y (λ(self args)(...)))
         (cons 'distToOrigin (λ(self args)(...))))))
```
“Subclassing”

- Can use `make-point` to write `make-color-point` or `make-polar-point` functions (see code)

- Build a new object using fields and methods from “super” “constructor”
 - Add new or overriding methods to the `beginning of the list`
 - `send` will find the first matching method
 - Since `send` passes the entire receiver for `self`, dynamic dispatch works as desired
Why not ML?

• We were wise not to try this in ML!

• ML's type system does not have subtyping for declaring a polar-point type that “is also a” point type
 – Workarounds possible (e.g., one type for all objects)
 – Still no good type for those self arguments to functions
 • Need quite sophisticated type systems to support dynamic dispatch if it is not built into the language

• In fairness, languages with subtyping but not generics make it analogously awkward to write generic code