
CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Winter 2013

Welcome!
We have 10 weeks to learn the fundamental concepts of
programming languages

With hard work, patience, and an open mind, this course makes
you a much better programmer

– Even in languages we won’t use
– Learn the core ideas around which every language is built,

despite countless surface-level differences and variations
– Poor course summary: “Uses SML, Racket, and Ruby”

Today’s class:
– Course mechanics
– [A rain-check on motivation]
– Dive into ML: Homework 1 due Wednesday of next week

Winter 2013 2 CSE341: Programming Languages

Concise to-do list

In the next 24-48 hours:

1. Read course web page:

http://www.cs.washington.edu/education/courses/cse341/13wi/
2. Read all course policies (4 documents on web page)
3. Adjust class email-list settings as necessary
4. Complete Homework 0 (survey worth 0 points)

5. Get set up using Emacs and SML

– Installation/configuration/use instructions on web page
– Essential; non-intellectual

• No reason to delay!

Winter 2013 3 CSE341: Programming Languages

Who
Course Staff:

Winter 2013 4 CSE341: Programming Languages

Dan Grossman: Faculty, 341 my favorite course / area of expertise
Eric Mullen: Ph.D. student, also a PL expert
Cody Schroeder: Master’s student, PL and 341-homework guru
Sean Wu: TAed 341 in Fall too (different languages)
Rachel Sobel: experienced TA; took 341 last time I taught it
Sunjay Cauligi: also an experienced TA (351)

A nice large staff: get to know us!
− Will explain why the staff is so large in a few minutes

Staying in touch

• Course email list: cse341a_wi13@u.washington.edu
– Students and staff already subscribed
– You must get announcements sent there
– Fairly low traffic

• Course staff: cse341-staff@cs.washington.edu
plus individual emails

• Message Board
– For appropriate discussions; TAs will monitor
– Optional, won’t use for important announcements

• Anonymous feedback link on webpage
– For good and bad: If you don’t tell me, I don’t know

Winter 2013 5 CSE341: Programming Languages

Lecture: Dan

• Slides, code, and reading notes / videos posted
– May be revised after class
– Take notes: materials may not describe everything

• Slides in particular are visual aids for me to use

• Ask questions, focus on key ideas

• Engage actively
– Arrive punctually (beginning matters most!) and well-rested

• Just like you will for the midterm!
– Write down ideas and code as we go
– If attending and paying attention is a poor use of your time,

one of us is doing something wrong

Winter 2013 6 CSE341: Programming Languages

Section: Cody and Eric

• Required: will usually cover new material

• Sometimes more language or environment details

• Sometimes main ideas needed for homework

• Will meet this week: using Emacs and SML

Cody and Eric will do both sections on different weeks

Material often also covered in reading notes / videos

Winter 2013 7 CSE341: Programming Languages

Reading Notes and Videos

• Posted for each “course unit:” reading notes and videos that go
over most (all?) of the material (and some extra stuff?)

• So why come to class?
– Because having these materials lets us make class-time

much more useful
• Answer your questions without being rushed because

occasionally “didn’t get to X; read about it”
• Can point to occasional optional topics/videos
• Can try different things in class, not just recite things

Winter 2013 8 CSE341: Programming Languages

Textbooks, or lack thereof
• Will treat the “textbooks” as optional, useful references

– Look up details you want/need to know, but often in free
online resources too

• Can provide good second explanations, but (because!) they
often take a fairly different approach
– If “Dan’s view” confuses you, lecture, reading notes, and

video might all confuse you

• Some topics aren’t in the texts

• Don’t be surprised when I essentially ignore the texts
– List on web page what sections are most relevant

• Some but maybe not all of you will do fine without the texts
– Would love your feedback on how they are useful

Winter 2013 9 CSE341: Programming Languages

Office hours

• Regular hours and locations on course web [soon]

– Changes as necessary announced on email list

• Use them
– Please visit me
– Ideally not just for homework questions (but that’s good too)

Winter 2013 10 CSE341: Programming Languages

Homework

• Seven total

• To be done individually

• Doing the homework involves:
1. Understanding the concepts being addressed
2. Writing code demonstrating understanding of the concepts
3. Testing your code to ensure you understand and have

correct programs
4. “Playing around” with variations, incorrect answers, etc.
Only (2) is graded, but focusing on (2) makes homework harder

• Challenge problems: Low points/difficulty ratio

Winter 2013 11 CSE341: Programming Languages

Note my writing style

• Homeworks tend to be worded very precisely and concisely
– I’m a computer scientist and I write like one (a good thing!)
– Technical issues deserve precise technical writing
– Conciseness values your time as a reader
– You should try to be precise too

• Skimming or not understanding why a word or phrase was
chosen can make the homework harder

• By all means ask if a problem is confusing
– Being confused is normal and understandable
– And I may have made a mistake
– Once you’re unconfused, you might agree the problem

wording didn’t cause the confusion

Winter 2013 12 CSE341: Programming Languages

Academic Integrity

• Read the course policy carefully
– Clearly explains how you can and cannot get/provide help on

homework and projects

• Always explain any unconventional action

• I have promoted and enforced academic integrity since I was a

freshman
– Great trust with little sympathy for violations
– Honest work is the most important feature of a university

Winter 2013 13 CSE341: Programming Languages

Exams

• Midterm: Friday February 8, in class

• Final: Thursday March 21, 8:30-10:20
– Yes, late in finals week
– Yes, you have to be here
– No, this was not my choice

• Same concepts, but different format from homework

– More conceptual (but write code too)
– Will post old exams
– Closed book/notes, but you bring one sheet with whatever

you want on it

Winter 2013 14 CSE341: Programming Languages

Coursera (more info in document)

• Course staff of 5 TAs because we are also running a free, online
version of the course for thousands of people around the world
– Starts next week

• You are not allowed to participate in that class!
– Do not web-search related to homework problems!

• This should have little impact on you
– Two courses are separate
– 341 is a great class and staff is committed to this offering

being the best ever

• But this is an exciting new thing you are likely curious about…

Winter 2013 15 CSE341: Programming Languages

More Coursera

• Why are we doing this?
– Dan’s answers:

• Have more impact (like a textbook)
• Experiment with where higher-ed might be going

– CSE / UW answers: Gain experience, be leaders

• So why are you paying tuition?
– Personal attention from humans
– Homeworks/exams with open-ended questions
– Class will adjust as needed
– We can be sure you actually learned
– Course is part of a coherent curriculum
– Beyond the classroom: job fairs, advisors, social, …

Winter 2013 16 CSE341: Programming Languages

Will Coursera help/hurt 341?

• The risk for 341 is the staff (me) will be distracted,
overburdened, and on 2 schedules
– We hope not!

• There are benefits too

– The videos
– More office hours
– More robust grading scripts
– Easier software installation (new SML Mode)
– Taking the “VIP version” of a more well-known course

Winter 2013 17 CSE341: Programming Languages

Questions?

Anything I forgot about course mechanics before we discuss, you

know, programming languages?

Winter 2013 18 CSE341: Programming Languages

What this course is about

• Many essential concepts relevant in any programming language
– And how these pieces fit together

• Use ML, Racket, and Ruby languages:
– They let many of the concepts “shine”
– Using multiple languages shows how the same concept can

“look different” or actually be slightly different
– In many ways simpler than Java

• Big focus on functional programming
– Not using mutation (assignment statements) (!)
– Using first-class functions (can’t explain that yet)
– But many other topics too

Winter 2013 19 CSE341: Programming Languages

Why learn this?

This is the “normal” place for course motivation
– Why learn this material?

But in my experience, we don’t have enough shared vocabulary

– So 2-week delay on motivation for functional programming
– I promise full motivation: delay is worth it
– (Will motivate immutable data at end of section 1)

Winter 2013 20 CSE341: Programming Languages

My claim

Learning to think about software in this “PL” way will make you a
better programmer even if/when you go back to old ways

It will also give you the mental tools and experience you need for a

lifetime of confidently picking up new languages and ideas

[Somewhat in the style of The Karate Kid movies (1984, 2010)]

Winter 2013 21 CSE341: Programming Languages

A strange environment

• The next 4-5 weeks will use
– ML language
– Emacs editor
– Read-eval-print-loop (REPL) for evaluating programs

• You need to get things installed and configured
– Either in the department labs or your own machine
– We’ve written thorough instructions (questions welcome)

• Only then can you focus on the content of Homework 1

• Working in strange environments is a CS life skill

Winter 2013 22 CSE341: Programming Languages

Mindset

• “Let go” of all programming languages you already know

• For now, treat ML as a “totally new thing”

– Time later to compare/contrast to what you know
– For now, “oh that seems kind of like this thing in [Java]” will

confuse you, slow you down, and you will learn less

• Start from a blank file…

Winter 2013 23 CSE341: Programming Languages

A very simple ML program
[The same program we just wrote in Emacs; here for conveniene if
reviewing the slides]

Winter 2013 24 CSE341: Programming Languages

(* My first ML program *)

val x = 34;

val y = 17;

val z = (x + y) + (y + 2);

val q = z + 1;

val abs_of_z = if z < 0 then 0 – z else z;

val abs_of_z_simpler = abs z

A variable binding

• Syntax:
– Keyword val and punctuation = and ;
– Variable x
– Expression e

• Many forms of these, most containing subexpressions

Winter 2013 25 CSE341: Programming Languages

val z = (x + y) + (y + 2); (* comment *)

 More generally:

 val x = e;

The semantics

• Syntax is just how you write something

• Semantics is what that something means

– Type-checking (before program runs)
– Evaluation (as program runs)

• For variable bindings:

– Type-check expression and extend static environment
– Evaluate expression and extend dynamic environment

So what is the precise syntax, type-checking rules, and evaluation
rules for various expressions? Good question!

Winter 2013 26 CSE341: Programming Languages

ML, carefully, so far

• A program is a sequence of bindings

• Type-check each binding in order using the static environment

produced by the previous bindings

• Evaluate each binding in order using the dynamic environment
produced by the previous bindings
– Dynamic environment holds values, the results of evaluating

expressions

• So far, the only kind of binding is a variable binding
– More soon

Winter 2013 27 CSE341: Programming Languages

Expressions

• We have seen many kinds of expressions:
 34 true false x e1+e2 e1<e2
 if e1 then e2 else e3
• Can get arbitrarily large since any subexpression can contain

subsubexpressions, etc.

• Every kind of expression has

1. Syntax
2. Type-checking rules

• Produces a type or fails (with a bad error message �)
• Types so far: int bool unit

3. Evaluation rules (used only on things that type-check)
• Produces a value (or exception or infinite-loop)

Winter 2013 28 CSE341: Programming Languages

Variables

• Syntax:
 sequence of letters, digits, _, not starting with digit

• Type-checking:

 Look up type in current static environment
– If not there fail

• Evaluation:
 Look up value in current dynamic environment

Winter 2013 29 CSE341: Programming Languages

Addition

• Syntax:
 e1 + e2 where e1 and e2 are expressions

• Type-checking:
 If e1 and e2 have type int,
 then e1 + e2 has type int

• Evaluation:

 If e1 evaluates to v1 and e2 evaluates to v2,
 then e1 + e2 evaluates to sum of v1 and v2

Winter 2013 30 CSE341: Programming Languages

Values

• All values are expressions

• Not all expressions are values

• A value “evaluates to itself” in “zero steps”

• Examples:
– 34, 17, 42 have type int
– true, false have type bool
– () has type unit

Winter 2013 31 CSE341: Programming Languages

Slightly tougher ones

What are the syntax, typing rules, and evaluation rules for
conditional expressions?

What are the syntax, typing rules, and evaluation rules for
less-than expressions?

Winter 2013 32 CSE341: Programming Languages

The foundation we need

We have many more types, expression forms, and binding forms to
learn before we can write “anything interesting”

Syntax, typing rules, evaluation rules will guide us the whole way!

For homework 1: functions, pairs, conditionals, lists, options, and
local bindings

– Earlier problems require less

Will not add (or need):
– Mutation (a.k.a. assignment): use new bindings instead
– Statements: everything is an expression
– Loops: use recursion instead

Winter 2013 33 CSE341: Programming Languages

