
CSE341: Programming Languages

Lecture 16

Datatype-Style Programming

With Lists or Structs

Dan Grossman

Winter 2013

The Goal

In ML, we often define datatypes and write recursive functions over

them – how do we do analogous things in Racket?

– First way: With lists

– Second way: With structs [a new construct]

• Contrast helps explain advantages of structs

Winter 2013 2 CSE341: Programming Languages

Life without datatypes

Racket has nothing like a datatype binding for one-of types

No need in a dynamically typed language:

– Can just mix values of different types and use primitives like
number?, string?, pair?, etc. to “see what you have”

– Can use cons cells to build up any kind of data

Winter 2013 3 CSE341: Programming Languages

Mixed collections

In ML, cannot have a list of “ints or strings,” so use a datatype:

In Racket, dynamic typing makes this natural without explicit tags

– Instead, every value has a tag with primitives to check it

– So just check car of list with number? or string?

Winter 2013 4 CSE341: Programming Languages

datatype int_or_string = I of int | S of string

fun funny_sum xs = (* int_or_string list -> int *)

 case xs of

 [] => 0

 | (I i)::xs’ => i + funny_sum xs’

 | (S s)::xs’ => String.size s + funny_sum xs’

Recursive structures

More interesting datatype-programming we know:

Winter 2013 5 CSE341: Programming Languages

datatype exp = Const of int

 | Negate of exp

 | Add of exp * exp

 | Multiply of exp * exp

fun eval_exp e =

 case e of

 Constant i => i

 | Negate e2 => ~ (eval_exp e2)

 | Add(e1,e2) => (eval_exp e1) + (eval_exp e2)

 | Multiply(e1,e2)=>(eval_exp e1)*(eval_exp e2)

Change how we do this

• Previous version of eval_exp has type exp -> int

• From now on will write such functions with type exp -> exp

• Why? Because will be interpreting languages with multiple

kinds of results (ints, pairs, functions, …)

– Even though much more complicated for example so far

• How? See the ML code file:

– Base case returns entire expression, e.g., (Const 17)

– Recursive cases:

• Check variant (e.g., make sure a Const)

• Extract data (e.g., the number under the Const)

• Also return an exp (e.g., create a new Const)

Winter 2013 6 CSE341: Programming Languages

New way in Racket

See the Racket code file for coding up the same new kind of
“exp -> exp” interpreter

– Using lists where car of list encodes “what kind of exp”

Key points:

• Define our own constructor, test-variant, extract-data functions

– Just better style than hard-to-read uses of car, cdr

• Same recursive structure without pattern-matching

• With no type system, no notion of “what is an exp” except in

documentation

– But if we use the helper functions correctly, then okay

– Could add more explicit error-checking if desired

Winter 2013 7 CSE341: Programming Languages

Symbols

Will not focus on Racket symbols like 'foo, but in brief:

– Syntactically start with quote character

– Like strings, can be almost any character sequence

– Unlike strings, compare two symbols with eq? which is fast

Winter 2013 8 CSE341: Programming Languages

New feature

Defines a new kind of thing and introduces several new functions:

• (foo e1 e2 e3) returns “a foo” with bar, baz, quux fields

holding results of evaluating e1, e2, and e3

• (foo? e) evaluates e and returns #t if and only if the result is

something that was made with the foo function

• (foo-bar e) evaluates e. If result was made with the foo

function, return the contents of the bar field, else an error

• (foo-baz e) evaluates e. If result was made with the foo

function, return the contents of the baz field, else an error

• (foo-quux e) evaluates e. If result was made with the foo

function, return the contents of the quux field, else an error

Winter 2013 9 CSE341: Programming Languages

(struct foo (bar baz quux) #:transparent)

An idiom

For “datatypes” like exp, create one struct for each “kind of exp”

– structs are like ML constructors!

– But provide constructor, tester, and extractor functions

• Instead of patterns

• E.g., const, const?, const-int

– Dynamic typing means “these are the kinds of exp” is “in

comments” rather than a type system

– Dynamic typing means “types” of fields are also “in

comments”

Winter 2013 10 CSE341: Programming Languages

(struct const (int) #:transparent)

(struct negate (e) #:transparent)

(struct add (e1 e2) #:transparent)

(struct multiply (e1 e2) #:transparent)

All we need

These structs are all we need to:

• Build trees representing expressions, e.g.,

• Build our eval-exp function (see code):

Winter 2013 11 CSE341: Programming Languages

(multiply (negate (add (const 2) (const 2)))

 (const 7))

(define (eval-exp e)

 (cond [(const? e) e]

 [(negate? e)

 (const (- (const-int

 (eval-exp (negate-e e)))))]

 [(add? e) …]

 [(multiply? e) …]…

Attributes

• #:transparent is an optional attribute on struct definitions

– For us, prints struct values in the REPL rather than hiding

them, which is convenient for debugging homework

• #:mutable is another optional attribute on struct definitions

– Provides more functions, for example:

– Can decide if each struct supports mutation, with usual

advantages and disadvantages

• As expected, we will avoid this attribute

– mcons is just a predefined mutable struct

Winter 2013 12 CSE341: Programming Languages

(struct card (suit rank) #:transparent #:mutable)

; also defines set-card-suit!, set-card-rank!

Contrasting Approaches

Versus

This is not a case of syntactic sugar

Winter 2013 13 CSE341: Programming Languages

(struct add (e1 e2) #:transparent)

(define (add e1 e2) (list 'add e1 e2))

(define (add? e) (eq? (car e) 'add))

(define (add-e1 e) (car (cdr e)))

(define (add-e2 e) (car (cdr (cdr e))))

The key difference

• The result of calling (add x y) is not a list

– And there is no list for which add? returns #t

• struct makes a new kind of thing: extending Racket with a new

kind of data

• So calling car, cdr, or mult-e1 on “an add” is a run-time error

Winter 2013 14 CSE341: Programming Languages

(struct add (e1 e2) #:transparent)

List approach is error-prone

• Can break abstraction by using car, cdr, and list-library

functions directly on “add expressions”

– Silent likely error:

(define xs (list (add (const 1)(const 4)) …))

(car (car xs))

• Can make data that add? wrongly answers #t to

(cons 'add "I am not an add")

Winter 2013 15 CSE341: Programming Languages

(define (add e1 e2) (list 'add e1 e2))

(define (add? e) (eq? (car e) 'add))

(define (add-e1 e) (car (cdr e)))

(define (add-e2 e) (car (cdr (cdr e))))

Summary of advantages

Struct approach:

• Is better style and more concise for defining data types

• Is about equally convenient for using data types

• But much better at timely errors when misusing data types

– Cannot accessor functions on wrong kind of data

– Cannot confuse tester functions

Winter 2013 16 CSE341: Programming Languages

More with abstraction

Struct approach is even better combined with other Racket features

not discussed here:

• The module system lets us hide the constructor function to

enforce invariants

– List-approach cannot hide cons from clients

– Dynamically-typed languages can have abstract types by

letting modules define new types!

• The contract system lets us check invariants even if constructor

is exposed

– For example, fields of “an add” must also be “expressions”

Winter 2013 17 CSE341: Programming Languages

Struct is special

Often we end up learning that some convenient feature could be

coded up with other features

Not so with struct definitions:

• A function cannot introduce multiple bindings

• Neither functions nor macros can create a new kind of data

– Result of constructor function returns #f for every other

tester function: number?, pair?, other structs’ tester

functions, etc.

Winter 2013 18 CSE341: Programming Languages

