
CSE341: Programming Languages

Lecture 15
Macros

Dan Grossman
Winter 2013

What is a macro

• A macro definition describes how to transform some new syntax
into different syntax in the source language

• A macro is one way to implement syntactic sugar
– “Replace any syntax of the form e1 andalso e2 with
if e1 then e2 else false”

• A macro system is a language (or part of a larger language) for
defining macros

• Macro expansion is the process of rewriting the syntax for each
macro use
– Before a program is run (or even compiled)

Winter 2013 2 CSE341: Programming Languages

Using Racket Macros

• If you define a macro m in Racket, then m becomes a new
special form:
– Use (m …) gets expanded according to definition

• Example definitions (actual definitions coming later):

– Expand (my-if e1 then e2 else e3)
 to (if e1 e2 e3)
– Expand (comment-out e1 e2)
 to e2
– Expand (my-delay e)
 to (mcons #f (lambda () e))

Winter 2013 3 CSE341: Programming Languages

Example uses

Winter 2013 4 CSE341: Programming Languages

(my-if x then y else z) ; (if x y z)
(my-if x then y then z) ; syntax error

(comment-out (car null) #f)

(my-delay (begin (print "hi") (foo 15)))

It is like we added keywords to our language
– Other keywords only keywords in uses of that macro
– Syntax error if keywords misused
– Rewriting (“expansion”) happens before execution

Overuse

Macros often deserve a bad reputation because they are often
overused or used when functions would be better

When in doubt, resist defining a macro?

But they can be used well

Winter 2013 5 CSE341: Programming Languages

Now…

• How any macro system must deal with tokens, parentheses,
and scope

• How to define macros in Racket

• How macro definitions must deal with expression evaluation
carefully
– Order expressions evaluate and how many times

• The key issue of variable bindings in macros and the notion of

hygiene
– Racket is superior to most languages here

Winter 2013 6 CSE341: Programming Languages

Tokenization

First question for a macro system: How does it tokenize?

• Macro systems generally work at the level of tokens not
sequences of characters
– So must know how programming language tokenizes text

• Example: “macro expand head to car”

– Would not rewrite (+ headt foo) to (+ cart foo)
– Would not rewrite head-door to car-door

• But would in C where head-door is subtraction

Winter 2013 7 CSE341: Programming Languages

Parenthesization
Second question for a macro system: How does associativity work?

C/C++ basic example:

Probably not what you wanted:
 means not

So C macro writers use lots of parentheses, which is fine:

Racket won’t have this problem:
– Macro use: (macro-name …)
– After expansion: (something else in same parens)

 Winter 2013 8 CSE341: Programming Languages

#define ADD(x,y) x+y

ADD(1,2/3)*4 1 + 2 / 3 * 4 (1 + 2 / 3) * 4

#define ADD(x,y) ((x)+(y))

Local bindings

Third question for a macro system: Can variables shadow macros?

Suppose macros also apply to variable bindings. Then:

Would become:

This is why C/C++ convention is all-caps macros and non-all-caps
for everything else

Racket does not work this way – it gets scope “right”!

Winter 2013 9 CSE341: Programming Languages

(let ([head 0][car 1]) head) ; 0
(let* ([head 0][car 1]) head) ; 0

(let ([car 0][car 1]) car) ; error
(let* ([car 0][car 1]) car) ; 1

Example Racket macro definitions

Two simple macros

Winter 2013 10 CSE341: Programming Languages

(define-syntax my-if ; macro name
 (syntax-rules (then else) ; other keywords
 [(my-if e1 then e2 else e3) ; macro use
 (if e1 e2 e3)])) ; form of expansion

(define-syntax comment-out ; macro name
 (syntax-rules () ; other keywords
 [(comment-out ignore instead) ; macro use
 instead])) ; form of expansion

If the form of the use matches, do the corresponding expansion
– In these examples, list of possible use forms has length 1
– Else syntax error

Revisiting delay and force
Recall our definition of promises from earlier

– Should we use a macro instead to avoid clients’ explicit thunk?

Winter 2013 11 CSE341: Programming Languages

(define (my-delay th)
 (mcons #f th))

(define (my-force p)
 (if (mcar p)
 (mcdr p)
 (begin (set-mcar! p #t)
 (set-mcdr! p ((mcdr p)))
 (mcdr p))))

(define (f p)
 (… (my-force p) …))

(f (my-delay (lambda () e)))

A delay macro

• A macro can put an expression under a thunk
– Delays evaluation without explicit thunk
– Cannot implement this with a function

• Now client should not use a thunk (that would double-thunk)
– Racket’s pre-defined delay is a similar macro

Winter 2013 12 CSE341: Programming Languages

(define-syntax my-delay
 (syntax-rules ()
 [(my-delay e)
 (mcons #f (lambda() e))]))

(f (my-delay e))

What about a force macro?

We could define my-force with a macro too
– Good macro style would be to evaluate the argument exactly

once (use x below, not multiple evaluations of e)
– Which shows it is bad style to use a macro at all here!
– Do not use macros when functions do what you want

Winter 2013 13 CSE341: Programming Languages

(define-syntax my-force
 (syntax-rules ()
 [(my-force e)
 (let([x e])
 (if (mcar x)
 (mcdr x)
 (begin (set-mcar! x #t)
 (set-mcdr! p ((mcdr p)))
 (mcdr p))))]))

Another bad macro

Any function that doubles its argument is fine for clients

– These are equivalent to each other

So macros for doubling are bad style but instructive examples:

– These are not equivalent to each other. Consider:

Winter 2013 14 CSE341: Programming Languages

(define (dbl x) (+ x x))
(define (dbl x) (* 2 x))

(define-syntax dbl (syntax-rules()[(dbl x)(+ x x)]))
(define-syntax dbl (syntax-rules()[(dbl x)(* 2 x)]))

(dbl (begin (print "hi") 42))

More examples
Sometimes a macro should re-evaluate an argument it is passed

– If not, as in dbl, then use a local binding as needed:

Also good style for macros not to have surprising evaluation order
– Good rule of thumb to preserve left-to-right
– Bad example (fix with a local binding):

Winter 2013 15 CSE341: Programming Languages

(define-syntax dbl
 (syntax-rules ()
 [(dbl x)
 (let ([y x]) (+ y y))]))

(define-syntax take
 (syntax-rules (from)
 [(take e1 from e2)
 (- e2 e1)]))

Local variables in macros
In C/C++, defining local variables inside macros is unwise

– When needed done with hacks like __strange_name34

Here is why with a silly example:
– Macro:

– Use:

– Naïve expansion:

– But instead Racket “gets it right,” which is part of hygiene

Winter 2013 16 CSE341: Programming Languages

(define-syntax dbl
 (syntax-rules ()
 [(dbl x) (let ([y 1])
 (* 2 x y))]))

(let ([y 7]) (dbl y))

(let ([y 7]) (let ([y 1])
 (* 2 y y)))

The other side of hygiene

This also looks like it would do the “wrong” thing

– Macro:

– Use:

– Naïve expansion:

– But again Racket’s hygienic macros get this right!

Winter 2013 17 CSE341: Programming Languages

(define-syntax dbl
 (syntax-rules ()
 [(dbl x) (* 2 x)]))

(let ([* +]) (dbl 42))

(let ([* +]) (* 2 42))

How hygienic macros work

A hygienic macro system:
1. Secretly renames local variables in macros with fresh names
2. Looks up variables used in macros where the macro is defined

Neither of these rules are followed by the “naïve expansion” most
macro systems use

– Without hygiene, macros are much more brittle (non-modular)

On rare occasions, hygiene is not what you want
– Racket has somewhat complicated support for that

Winter 2013 18 CSE341: Programming Languages

More examples

See the code for macros that:

• A for loop for executing a body a fixed number of times

– Shows a macro that purposely re-evaluates some
expressions and not others

• Allow 0, 1, or 2 local bindings with fewer parens than let*

– Shows a macro with multiple cases

• A re-implementation of let* in terms of let

– Shows a macro taking any number of arguments
– Shows a recursive macro

Winter 2013 19 CSE341: Programming Languages

