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Modules 

For larger programs, one “top-level” sequence of bindings is poor 
– Especially because a binding can use all earlier (non-

shadowed) bindings 
 

So ML has structures to define modules 
 
 
Inside a module, can use earlier bindings as usual 

– Can have any kind of binding (val, datatype, exception, ...) 
 

Outside a module, refer to earlier modules’ bindings via 
ModuleName.bindingName 

– Just like List.foldl and String.toUpper; now you can 
define your own modules 
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structure MyModule = struct bindings end 

Example 
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structure MyMathLib =  
struct  
 
fun fact x =  
    if x=0 
    then 1 
    else x * fact(x-1) 
 
val half_pi = Math.pi / 2 
 
fun doubler x = x * 2 
 
end 
 

 

Namespace management 

• So far, this is just namespace management 
– Giving a hierarchy to names to avoid shadowing 
– Allows different modules to reuse names, e.g., map 
– Very important, but not very interesting 
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Optional: Open 

• Can use open ModuleName to get “direct” access to a 
module’s bindings 
– Never necessary; just a convenience; often bad style 
– Often better to create local val-bindings for just the bindings 

you use a lot, e.g., val map = List.map 
• But doesn’t work for patterns 
• And open can be useful, e.g., for testing code 
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Signatures 
• A signature is a type for a module 

– What bindings does it have and what are their types 
• Can define a signature and ascribe it to modules – example: 
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signature MATHLIB =  
sig  
val fact : int -> int 
val half_pi : real  
val doubler : int -> int 
end 
 

structure MyMathLib :> MATHLIB =  
struct  
fun fact x = … 
val half_pi = Math.pi / 2.0 
fun doubler x = x * 2 
end 
 

 



In general 

• Signatures 
 
 

 

– Can include variables, types, datatypes, and exceptions defined 
in module 

 

• Ascribing a signature to a module 
 

 
 

– Module will not type-check unless it matches the signature, 
meaning it has all the bindings at the right types 
 

– Note: SML has other forms of ascription; we will stick with these                
[opaque signatures] 
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structure MyModule :> SIGNAME =   
struct bindings end 

signature SIGNAME =   
sig types-for-bindings end 

Hiding things 

 
Real value of signatures is to to hide bindings and type definitions 

– So far, just documenting and checking the types 
 

Hiding implementation details is the most important strategy for 
writing correct, robust, reusable software 
 
So first remind ourselves that functions already do well for some 
forms of hiding… 

 

Winter 2013 8 CSE341: Programming Languages 

Hiding with functions 

These three functions are totally equivalent: no client can tell which 
we are using (so we can change our choice later): 
 
 
 
 
 

Defining helper functions locally is also powerful 
– Can change/remove functions later and know it affects no 

other code 
 

Would be convenient to have “private” top-level functions too 
– So two functions could easily share a helper function 
– ML does this via signatures that omit bindings… 
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fun double x = x*2 
fun double x = x+x 
val y = 2 
fun double x = x*y 

Example 

Outside the module, MyMathLib.doubler is simply unbound 
– So cannot be used [directly] 
– Fairly powerful, very simple idea 
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signature MATHLIB =  
sig  
val fact : int -> int 
val half_pi : real  
end 
 

structure MyMathLib :> MATHLIB =  
struct  
fun fact x = … 
val half_pi = Math.pi / 2.0 
fun doubler x = x * 2 
end 
 

 

A larger example [mostly see the code] 

Now consider a module that defines an Abstract Data Type (ADT) 
– A type of data and operations on it 

Our example: rational numbers supporting add and toString 
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structure Rational1 =  
struct  
datatype rational = Whole of int | Frac of int*int 
exception BadFrac 
 

(*internal functions gcd and reduce not on slide*) 
 

fun make_frac (x,y) = … 
fun add (r1,r2) = … 
fun toString r = … 
end 
 

 

Library spec and invariants 

Properties [externally visible guarantees, up to library writer] 
– Disallow denominators of 0 
– Return strings in reduced form (“4” not “4/1”, “3/2” not “9/6”) 
– No infinite loops or exceptions 

 
Invariants [part of the implementation, not the module’s spec] 

– All denominators are greater than 0 
– All rational values returned from functions are reduced 
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More on invariants 

Our code maintains the invariants and relies on them 
 
Maintain: 

– make_frac disallows 0 denominator, removes negative 
denominator, and reduces result 

– add assumes invariants on inputs, calls reduce if needed 
 

Rely: 
– gcd does not work with negative arguments, but no 

denominator can be negative 
– add uses math properties to avoid calling reduce 
– toString assumes its argument is already reduced 
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A first signature 

With what we know so far, this signature makes sense: 
– gcd and reduce not visible outside the module 
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signature RATIONAL_A =  
sig  
datatype rational = Whole of int | Frac of int*int 
exception BadFrac 
val make_frac : int * int -> rational 
val add : rational * rational -> rational 
val toString : rational -> string 
end 
 

structure Rational1 :> RATIONAL_A = … 
 

 

The problem 

By revealing the datatype definition, we let clients violate our invariants 
by directly creating values of type Rational1.rational 

– At best a comment saying “must use Rational1.make_frac” 
 
 
 
 
 

Any of these would lead to exceptions, infinite loops, or wrong results, 
which is why the module’s code would never return them 

– Rational1.Frac(1,0) 
– Rational1.Frac(3,~2) 
– Rational1.Frac(9,6) 
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signature RATIONAL_A =  
sig  
datatype rational = Whole of int | Frac of int*int 
… 

So hide more 

Key idea:  An ADT must hide the concrete type definition so clients 
cannot create invariant-violating values of the type directly 
 
Alas, this attempt doesn’t work because the signature now uses a 
type rational that is not known to exist: 
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signature RATIONAL_WRONG =  
sig  
exception BadFrac 
val make_frac : int * int -> rational 
val add : rational * rational -> rational 
val toString : rational -> string 
end 
 

structure Rational1 :> RATIONAL_WRONG = … 
 

 

Abstract types 

So ML has a feature for exactly this situation: 
 

In a signature: 
type foo  

means the type exists, but clients do not know its definition 
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signature RATIONAL_B =  
sig  
type rational 
exception BadFrac 
val make_frac : int * int -> rational 
val add : rational * rational -> rational 
val toString : rational -> string 
end 
 

structure Rational1 :> RATIONAL_B = … 
 

 

This works! (And is a Really Big Deal) 

Nothing a client can do to violate invariants and properties: 
– Only way to make first rational is Rational1.make_frac 
– After that can use only Rational1.make_frac, 
Rational1.add, and Rational1.toString 

– Hides constructors and patterns – don’t even know whether 
or not Rational1.rational is a datatype 

– But clients can still pass around fractions in any way 
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signature RATIONAL_B =  
sig  
type rational 
exception BadFrac 
val make_frac : int * int -> rational 
val add : rational * rational -> rational 
val toString : rational -> string 
end 
 



Two key restrictions 

So we have two powerful ways to use signatures for hiding: 
 
1. Deny bindings exist (val-bindings, fun-bindings, constructors) 

 
2. Make types abstract (so clients cannot create values of them or 

access their pieces directly) 
 

(Later we will see a signature can also make a binding’s type more 
specific than it is within the module, but this is less important) 
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A cute twist 

In our example, exposing the Whole constructor is no problem 
 

In SML we can expose it as a function since the datatype binding in 
the module does create such a function 

– Still hiding the rest of the datatype 
– Still does not allow using Whole as a pattern 
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signature RATIONAL_C =  
sig  
type rational 
exception BadFrac 
val Whole : int -> rational 
val make_frac : int * int -> rational 
val add : rational * rational -> rational 
val toString : rational -> string 
end 
 

Signature matching 
Have so far relied on an informal notion of, “does a module type-
check given a signature?”  As usual, there are precise rules… 
 

structure Foo :> BAR is allowed if: 
 

• Every non-abstract type in BAR is provided in Foo, as specified 
• Every abstract type in BAR is provided in Foo in some way 

– Can be a datatype or a type synonym 
• Every val-binding in BAR is provided in Foo, possibly with a 

more general and/or less abstract internal type 
– Discussed “more general types” earlier in course 
– Will see example soon 

• Every exception in BAR is provided in Foo 
 

Of course Foo can have more bindings (implicit in above rules) 
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Equivalent implementations 

A key purpose of abstraction is to allow different implementations to 
be equivalent 

– No client can tell which you are using 
– So can improve/replace/choose implementations later 
– Easier to do if you start with more abstract signatures (reveal 

only what you must) 
 

Now:  
   Another structure that can also have signature RATIONAL_A,  
   RATIONAL_B, or RATIONAL_C 

– But only equivalent under RATIONAL_B or RATIONAL_C 
 (ignoring overflow) 

Next:  
    A third equivalent structure implemented very differently 
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Equivalent implementations 

Example (see code file): 
 

• structure Rational2 does not keep rationals in reduced form, 
instead reducing them “at last moment” in toString 
– Also make gcd and reduce local functions 

 
• Not equivalent under RATIONAL_A 

– Rational1.toString(Rational1.Frac(9,6)) = "9/6" 
– Rational2.toString(Rational2.Frac(9,6)) = "3/2" 

 
• Equivalent under RATIONAL_B or RATIONAL_C 

– Different invariants, but same properties 
– Essential that type rational is abstract 
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More interesting example 
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Given a signature with an abstract type, different structures can: 
– Have that signature 
– But implement the abstract type differently 

 
Such structures might or might not be equivalent 
 
Example (see code): 

– type rational = int * int 
– Does not have signature RATIONAL_A 
– Equivalent to both previous examples under RATIONAL_B or 
RATIONAL_C 



More interesting example 

Winter 2013 25 CSE341: Programming Languages 

structure Rational3 =  
struct  
type rational = int * int 
exception BadFrac 
 

fun make_frac (x,y) = … 
fun Whole i = (i,1) (* needed for RATIONAL_C *)  
fun add ((a,b)(c,d)) = (a*d+b*c,b*d) 
fun toString r = … (* reduce at last minute *) 
end 
 

 

Some interesting details 

• Internally make_frac has type int * int -> int * int, 
but externally int * int -> rational 
– Client cannot tell if we return argument unchanged 
– Could give type rational -> rational in signature, but 

this is awful: makes entire module unusable – why? 
 

• Internally Whole has type 'a -> 'a * int but externally     
int -> rational 
– This matches because we can specialize 'a to int and then 

abstract int * int  to rational 
– Whole cannot have types 'a -> int * int                    

or 'a -> rational (must specialize all 'a uses) 
– Type-checker figures all this out for us 
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Can’t mix-and-match module bindings 

Modules with the same signatures still define different types 
 
So things like this do not type-check: 

– Rational1.toString(Rational2.make_frac(9,6)) 
– Rational3.toString(Rational2.make_frac(9,6)) 
 

This is a crucial feature for type system and module properties: 
– Different modules have different internal invariants! 
– In fact, they have different type definitions 

• Rational1.rational looks like Rational2.rational, 
but clients and the type-checker do not know that 

• Rational3.rational is int*int not a datatype! 
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