
Name:

CSE 341, Winter 2008, Final Examination
19 March 2008

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 10:20.

• You can rip apart the pages, but please staple them back together before you leave.

• There are 100 points total, distributed among 7 questions (most with multiple parts). (Six questions
are worth 15 points. One question is worth 10 points.)

• When writing code, style matters, but don’t worry about indentation.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around.

• If you have questions, ask.

• Relax. You are here to learn.

1

Name:

1. (15 points)

(a) Write a function fold in Scheme that is like the fold function we studied in ML. Recall fold takes
3 arguments: a function, an initial-result, and a list. The function is applied to each element of
the list and the “current-result” to produce the next “current-result.” Have your Scheme fold
function take 3 arguments (do not use currying).

(b) Write a Scheme function largest-pos that takes a list and returns the largest positive number
in the list (or 0 if the list contains no positive numbers). Use fold and no other use of recursion.
Your function should work even when not every element of the list is a number.

Solution:

(a) (define (fold f init lst)
(if (null? lst)

init
(fold f (f init (car lst)) (cdr lst))))

(b) (define (largest-pos lst)
(fold (lambda (sofar next)

(if (and (number? next)
(> next sofar))

next
sofar))

0 lst))

2

Name:

2. (10 points) Given the Scheme program below, what are x, y, and z bound to? Explain your answer
by explaining what the function bound to f returns. Hint: x and z are bound to lists of numbers.

(define f
(let ([y 0])

(lambda ()
(begin (set! y (+ y 1))

(let ([x y])
(lambda () x))))))

(define x (list ((f)) ((f)) ((f))))
(define y (f))
(define z (list (y) (y) (y)))

Solution:
The program binds x to the list (1 2 3) and z to the list (4 4 4). y is bound to a function that
returns 4. The function bound to f returns a thunk that when called for the nth time returns a thunk
that always returns n.

3

Name:

3. (15 points) Consider this Scheme code:

(define (foo1 x y)
(if (= x 0)

42
(* x y y)))

(define-syntax foo2
(syntax-rules ()
[(foo2 x y)
(if (= x 0)

42
(* x y y))]))

(a) Explain how uses of foo1 and foo2 could behave differently. Give an example and explain how
foo1 and foo2 would behave differently for your example.

(b) Define a macro foo3 that always behaves equivalently to foo1 (even though it would be better
style just to use foo1). Do not use foo1 or any other helper functions in your solution.

Solution:

(a) The arguments to the function foo1 are always evaluated exactly once because that is how function
calls work in Scheme. For the macro foo2, the second argument will not be evaluated if x is 0
and will be evaluated twice if x is not 0. As an example, (foo1 0 (/ 1 0)) would raise an error,
but (foo2 0 (/ 1 0)) would return 0. As another example, (foo1 1 (begin (print "x") 3))
would print one x and return 9, but (foo1 1 (begin (print "x") 3)) would print two x’s and
return 9.

(b) (define-syntax foo3
(syntax-rules ()
[(foo2 x y)
(let ([x1 x]

[y1 y])
(if (x1 0)

42
(* x1 y1 y1)))]))

4

Name:

4. (15 points) This problem considers ttpl (for teeny tiny programming language), which is a lot like
mupl from homework 5. Like mupl, it is embedded in Scheme via struct definitions. It has fewer
constructs than mupl and all functions must have names (whether or not they are recursive). Here
are the definitions and one interpreter:

(define-struct var (string)) ;; a variable, e.g., (make-var "foo")
(define-struct int (num)) ;; a constant number, e.g., (make-int 17)
(define-struct add (e1 e2)) ;; add two expressions
(define-struct fun (name formal body)) ;; a recursive 1-argument function
(define-struct app (funexp actual)) ;; function application
(define-struct closure (fun env)) ;; closures (made at run-time)

(define (envlookup env str)
(cond [(null? env) (error "unbound variable during evaluation" str)]

[(equal? (caar env) str) (cdar env)]
[#t (envlookup (cdr env) str)]))

(define (eval-prog p)
(letrec

([f (lambda (env p)
(cond [(var? p) (envlookup env (var-string p))]

[(int? p) p]
[(add? p) (let ([v1 (f env (add-e1 p))]

[v2 (f env (add-e2 p))])
(if (and (int? v1) (int? v2))

(make-int (+ (int-num v1) (int-num v2)))
(error "TTPL addition applied to non-number")))]

[(fun? p) (make-closure p env)]
[(app? p) (let ([cl (f env (app-funexp p))]

[arg (f env (app-actual p))])
(if (closure? cl)

(let* ([fn (closure-fun cl)]
[b1 (cons (fun-formal fn) arg)]
[b2 (cons (fun-name fn) cl)]
[new-env (cons b1 (cons b2 (closure-env cl)))])

(f new-env (fun-body fn)))
(error "TTPL function call with non-function")))]

[(closure? p) p]
[#t (error "bad TTPL expression")]))])

(f () p)))

Now suppose we have a different interpreter eval-prog-other that is exactly like eval-prog except
the line [new-env (cons b1 (cons b2 (closure-env cl)))])
is instead [new-env (cons b2 (cons b1 (closure-env cl)))]).

Write a ttpl program such that calling eval-prog with your program returns (make-int 4) but
calling eval-prog-other with your program raises an error. Explain your answer.

(Put your answer on the next page. Sample solution uses all 5 kinds of ttpl source expressions
including one function definition and one function application. It is “a little tricky” but not very long.
Focus on what is different between the two interpreters.)

5

Name:

This page intentionally blank.

Solution:

(make-app (make-fun "f" "f" (make-add (make-var "f") (make-var "f")))
(make-int 2))

In eval-prog when a function uses the same variable for recursion and for the argument, the argu-
ment shadows the function name, so in our example application we add 2 and 2 to produce 4. In
eval-prog-other the function name shadows the argument, so the addition tries to add closures,
which raises an error.

6

Name:

5. (15 points) Recall that the Ruby Enumerable module provides methods that work assuming the class
that includes Enumerable implements each correctly.

(a) Write Ruby code that adds a fold method to the Enumerable module. This fold method is
similar to the fold function we studied in ML. It should take 2 arguments, an instance of class
Proc (which recall has a method call) and an initial-result. The Proc is called with each “element
of self” and the “current-result” to produce the next “current-result.”

(b) Define a top-level Ruby function largest_pos that takes an array and returns the largest positive
number in the array. Use the fold method you defined above (remember, the Array class includes
the Enumerable module). You will need to use lambda. Do not use any other methods of the
Array class or any sort of loop. You may assume every element of the array is a number, and
that your definition of fold works correctly.

Solution:

(a) module Enumerable
def fold(f,init)
each {|x| init = f.call(init,x)}
init

end
end

(b) def largest_pos arr
arr.fold(lambda {|sofar,elt| if elt < sofar : sofar else elt end}, 0)

end

7

Name:

6. (15 points) Consider these two simple Ruby classes:

class C # line 1
def m x
print (x.foo + x.foo)
42

end
end

class D # line 2
def m x
print (x.foo + x.bar)
42

end
end

(a) Describe everything that class C’s m method assumes about its argument in order for a call to m
not to raise an error.

(b) Describe everything that class D’s m method assumes about its argument in order for a call to m
not to raise an error.

(c) Assume we add a type system for preventing message-not-understood errors to Ruby similar to
what we discussed in lecture and that we have a policy of “all subclasses are subtypes” (so any
instance of a subclass must be substitutable in place of any instance of a superclass). Which of
the following should type-check? Explain your answers.

i. Making C a subclass of D (i.e., adding < D to line 1)
ii. Making D a subclass of C (i.e., adding < C to line 2)

Solution:

(a) It assumes x is an object that has a zero-argument method named foo that returns an object
that has a + method that takes another object (also returned by foo) and returns something that
can be printed.

(b) It assumes x is an object that has a zero-argument method named foo that returns an object
that has a + method that takes another object and returns something that can be printed. It also
assumes x has a zero-argument method named bar that returns an object appropriate for passing
to the + method of the object returned from foo.

(c) i. This should type-check. With this subtyping C overrides method m but the method makes
fewer assumptions about its argument (see part (a)), so this is fine contravariant subtyping.
Note: One could argue that this should not type-check since C and D might make incompatible
assumptions about the argument type of the + method in the object returned by x.foo.
Solutions that explained such an argument clearly received full credit (though only 1–2 took
this interpretatio of the situation).

ii. This should not type-check. With this subtyping D overrides method m but makes more
assumptions about its arguments. So given an object of type C that was actually a D we
might call m with an argument that has a foo method but not a bar method.

8

Name:

7. (15 points) In a Ruby method body, a use of an identifier such as x (in general, any identifier) could
refer either to a variable (a local variable or a method parameter) or to a method (as sugar for calling
self.x). In the real Ruby language, if a method x is in scope and a local variable x is also in scope,
the variable shadows the method. However, for this problem, assume instead it is a run-time error to
evaluate the expression x when both a variable and method are in scope with the same name x.

Consider this static-checker for programs: For every class C, if C or any of its superclasses defines a
method with some name (for example, x), then no method in C may have an argument or local variable
with the same name (that is, x).

(a) Explain why the static-checker described above is not sound for preventing the run-time error
described above.

(b) Explain why the static-checker described above is not complete for preventing the run-time error
described above.

Solution:

(a) It accepts some programs that can raise a run-time error. If a subclass of C extends C with
a method x, then this new method is still in scope (due to dynamic dispatch), so we still must
disallow variables named x in C’s methods. But the static-checker only checks C and its superclasses
for what names must be avoided.

(b) It rejects some programs that do not raise run-time errors. As a simple example, suppose the
code in some method m is the only code that causes the static checker to reject a program. If
the program never calls m when it runs, then we need not reject the program to avoid a run-time
error.

9

