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CSE 341, Spring 2011, Final Examination
9 June 2011

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper. You may also
have the sheet of notes you had at the midterm.

• Please stop promptly at 10:20.

• You can rip apart the pages, but please staple them back together before you leave.

• There are 100 points total, distributed unevenly among 9 questions (most with multiple parts).

• When writing code, style matters, but don’t worry too much about indentation.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around.

• If you have questions, ask.

• Relax. You are here to learn.
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1. (a) (11 points) A binary tree can be defined in Racket as

(define-struct tree (val left right))

where val is any value and left and right are subtrees or ’().

Write a scheme function sum-tree that takes one tree argument.

• If every node in the tree contains only numbers as values, return the sum of the node values
in the tree.

• If the argument is null (’()), the result should be 0.

• If any node contains a value that is not a number, or if a subtree is something other than a
tree struct or null (’()) the function should return #f.

• Sample solution is about 9 lines; this is just a rough guide.

(b) (4 points) Give two reasons why a similar function in ML that does not define any additional
datatypes other than tree would not type-check.
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2. (a) (5 points) Suppose we execute the following code in standard Scheme.

(define a 1)

(define dill (lambda () (begin (set! a (- a 1)) a)))

(define (pickles f) (list (f) (f) (f)))

(define result1 (pickles dill))

What is the value of result1?

(b) (5 points) Now suppose we execute the following code, which is similar but not quite the same.

(define a 1)

(define dill (lambda () (begin (set! a (- a 1)) a)))

(define (relish f) (list f f f)) ;; this is the major difference

(define result2 (relish dill))

What is the value of result2?

(c) (3 points) Explain why result1 and result2 are the same or different values.
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3. (10 points) Suppose we execute the following code in standard Scheme:

(define evil

(let ([x 2])

(lambda (y)

(let ([z 3])

(begin (set! x (+ 1 x))

(set! z (+ 1 z))

(+ x y z))))))

(define ans (list (evil 1) (evil 1) (evil 1)))

What is the value of ans?
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4. (14 points) In this problem, we consider an interpreter for a language rupl (for really useless
programming language) which is like mupl from Homework 5. However we would like to include a
version of let with two bindings instead of one. Programs are built using these structs, among others:

(define-struct var (string)) ;; a variable, e.g., (make-var "foo")

(define-struct int (num)) ;; a constant number, e.g., (make-int 17)

(define-struct add (e1 e2)) ;; add two expressions

(define-struct fun (nameopt formal body)) ;; a recursive(?) 1-argument function

(define-struct app (funexp actual)) ;; function application

(define-struct let2 (var1 e1 var2 e2 e3)) ;; a 2-element let expression

The rupl expression (make-let2 "x" e1 "y" e2 e3) has exactly the same meaning as the Scheme
expression (let ([x e1] [y e2]) e3), although, of course, any other names could be used instead
of x and y. Below is the core of the rupl interpreter. In the space provided, add the code needed to
implement this new 2-element let2 construct.

(define (envlookup env str)

(cond [(null? env) (error "unbound variable during evaluation" str)]

[(equal? (caar env) str) (cdar env)]

[#t (envlookup (cdr env) str)]))

(define (eval-prog p)

(letrec ([f (lambda (env p)

(cond [(var? p) (envlookup env (var-string p))]

[(int? p) p]

[(add? p) (let ([v1 (f env (add-e1 p))]

[v2 (f env (add-e2 p))])

(if (and (int? v1) (int? v2))

(make-int (+ (int-num v1) (int-num v2)))

(error "rupl addition applied to non-number")))]

[(let2? p)

]

;; remaining rupl code omitted

[#t (error "bad rupl expression")]))])

(f () p)))
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5. (12 points) Write a Ruby program that reads text from standard input and prints the word that
occurs most frequently in the input and how often it occurs. For example, if the input is

to be or not to be

to do is to be

do be do be do

the expected output is be 5 . In this case “be” appears 5 times, and all other words appear fewer
times. If more than one word is the most frequent you may pick any one of them arbitrarily to print.

To simplify things you can assume that all words are lower-case and are separated by whitespace, with
no leading or trailing whitespace on an input line. You can use gets to read lines from standard input.

You may find it convenient to use the Ruby string method split, which returns an array containing
the whitespace-separated words in the string. Example:

"one two three".split => ["one", "two", "three"]

For full credit you should use Ruby iterators like each to process collections like arrays and hashes.
Hint: Keep it simple — it’s not particularly complex.
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6. (10 points) Consider the following very simple Ruby class that maintains a value and allows the value
to be changed and retrieved.

class Thing

def initialize val

@val = val

end

def val

@val

end

def val= newval

@val = newval

end

end

Write a subclass CountedThing that works exactly like Thing with the following additions:

(a) The subclass counts how many times an assignment to the instance variable @val is executed
(including the initial assignment when it is created).

(b) The subclass incudes a new method nchanges that returns the number of times an assignment to
the instance variable has been executed.

The subclass should not duplicate code contained in the original Thing class if at all possible. Use
super as appropriate.
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7. For each of the following definitions, does it type-check in ML? If so, what type does it have? If not,
why not?

(a) (4 points) val a = fn g => (fn x => fn y => x) (g 0) (g 7);

(b) (4 points) val b = fn g => (fn x => fn y => x) (g 0) (g "happy");

(c) (4 points) val c = fn g => (fn x => fn y => x) (g 0) (g (g 7));

8. (6 points) Many people assume that programs written in a type-safe language with automatic garbage
collection cannot suffer from ”space leaks” (or memory leaks, as they are sometimes called). Is this
true? If so, why or why not? (Be brief, please)
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9. (8 points) This question concerns the typing rules for Java arrays that store references to objects (i.e.,
not arrays of primitive types like int or double).

The original version of Java did not have generics (polymorphic types). In order to allow arrays to
be useful to implement things like lists of objects with arbitrary types, array types were defined to be
covariant in their element types. If type S is a subtype of T , then the array type S[ ] is a subtype of
the array type T [ ]. In other words, if S <: T , then S[ ] <: T [ ], and vice versa.

This rule allows us to, for instance, use an array of type Object[] to store references to objects of any
type, and a variable of type Object[] can hold a reference to an array of any other reference type.
For backwards compatibility, if nothing else, this typing rule is still used in Java, even though generic
types (type parameters) now provide other ways to implement lists and other containers.

Is this rule sound? If it is, give a convincing (but brief) argument why. If not, give an example that
shows why not.
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