
Name:

CSE 341, Spring 2008, Midterm Examination
30 April 2008

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 10:20.

• You can rip apart the pages, but please staple them back together before you leave.

• There are 95 points total, distributed unevenly among 5 questions (all with multiple parts).

• When writing code, style matters, but don’t worry about indentation.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around.

• If you have questions, ask.

• Relax. You are here to learn.

1



Name:

1. This problem uses this datatype definition:

datatype int_tree = Leaf of int | Node of int_tree * int_tree

(a) (6 points) Write a function leftmost that returns the int farthest to the left in a int_tree.
(Given Node(e1,e2), everything in e1 is to the left of everything in e2.)

(b) (10 points) Write a function max that returns the greatest int in an int_tree.

Solution:

(a) fun leftmost tree =
case tree of
Leaf i => i

| Node(l,_) => leftmost l

(b) fun max tree =
case tree of
Leaf i => i

| Node(l,r) => let val m1 = max l
val m2 = max r

in if m1 > m2 then m1 else m2 end

2



Name:

2. (a) (7 points) Describe what function m1 computes (not how it computes it):

fun m1 lst =
case lst of
[] => []

| x::[] => x::[]
| x::(_::z) => x :: (m1 z)

(b) (6 points) Describe what function m2 computes. Hint: It is not the same as what m1 computes.

fun m2 lst =
let fun loop (lst1,lst2) =

case lst1 of
[] => lst2

| x::[] => x::lst2
| x::(_::z) => loop(z,x::lst2)

in
loop(lst,[])

end

(c) (4 points) Briefly explain why m2 might be more efficient than m1.

(d) (4 points) Even though m1 and m2 are not equivalent, there are situations where it does not
matter which you use, even if you do not know anything about the list they are called with.
Describe an example of such a situation.

Solution:

(a) m1 takes a list and returns a list that has the odd-numbered elements of the argument (the first-
element, the third-element, the fifth-element, etc.) in the same order. For example, m1 [8,6,4,2]
evaluates to [8,4].

(b) m2 takes a list and returns a list that has the odd-numbered elements of the argument (the first-
element, the third-element, the fifth-element, etc.) in reverse order compared to the argument.
For example, m1 [8,6,4,2] evaluates to [4,8].

(c) m2 uses a tail-recursive helper function, so the call-stack while evaluating a call to m2 does not
grow. m1 is not tail-recursive.

(d) Any example where the order of list elements does not matter suffices. For example, suppose we are
going to sum the elements in a list with a function sum. Then sum (m1 lst) and sum (m2 lst)
are equivalent even though m1 lst and m2 lst may not be the same list.

3



Name:

3. For each of the following programs, give the value that ans is bound to after evaluation.

(a) (5 points)

val x = 2
fun f (z,w) = x + z + w
val z = 3
val x = 4
val ans = f(z,x)

(b) (6 points)

val x = 2
fun f (z,w) = fn x => x + z + w
val g = f(3,4)
val z = 5
val ans = g z

(c) (5 points)

fun f g x =
case x of
NONE => NONE

| SOME y => SOME (g y)
val x = SOME 17
val ans = f (fn y => y+1) x

Solution:

(a) 9

(b) 12

(c) SOME 18

4



Name:

4. (a) (11 points) Write a function map_alternate that takes two functions f and g and a list lst and
returns a lst produced by applying f to the elements in odd positions in the list (the first element,
the third element, the fifth element, etc.) and applying g to the elements in even positions in the
list (the second element, the fourth element, the sixth element, etc.)

• map_alternate should takes its argument in curried form with f then g then lst.
• Do not use any helper functions nor any ML library functions.
• Hint: Think carefully about how to call map_alternate recursively to produce a short elegant

solution.

(b) (5 points) What is the type of map_alternate?

(c) (4 points) Use a val binding and map_alternate to define double_odds, which should take a
list of integers and return a list where the numbers in odd positions in the list are doubled and the
numbers in even positions are unchanged. For example, double_odds [5,7,8,6,1] evaluates to
[10,7,16,6,2].

(d) (2 points) What is the type of double_odds?

Solution:

(a) fun map_alternate f g lst =
case lst of
[] => []

| first::rest => (f first)::(map_alternate g f rest)

(b) (’a -> ’b) -> (’a -> ’b) -> ’a list -> ’b list

(c) val double_odds = map_alternate (fn x => x+x) (fn x => x)

(d) int list -> int list

5



Name:

5. Consider this signature and structure definition for a module that implements “digits” — one-digit
numbers that wrap around when you increment or decrement them.

signature DIGIT =
sig
type digit = int
val make_digit : int -> digit
val increment : digit -> digit
val decrement : digit -> digit
val down_and_up : digit -> digit
val test : digit -> unit
end

structure Digit :> DIGIT =
struct
type digit = int
exception BadDigit
exception FailTest
fun make_digit i = if i < 0 orelse i > 9 then raise BadDigit else i
fun increment d = if d=9 then 0 else d+1
fun decrement d = if d=0 then 9 else d-1
val down_and_up = increment o decrement
fun test d = if down_and_up d <> d then raise FailTest else ()
end

(a) (5 points) Give example client code (code outside the module) that can cause the FailTest
exception to be raised.

(b) Consider each of the following changes to the DIGIT signature separately. Answer “yes” if it is
still possible to raise the FailTest exception and “no” if it is no longer possible. For each, briefly
explain why.

i. (5 points) Remove the line val test : digit -> unit.
ii. (5 points) Remove the line val down_and_up : digit -> digit.
iii. (5 points) Replace the line type digit = int with type digit.

Solution:

(a) Digit.test 10

(b) i. no, only Digit.test can raise FailTest and we can no longer call this function anywhere in
the program.

ii. yes, we can still call Digit.test and it can use anything in the module regardless of the
signature.

iii. no, now that the type is abstract we can only call Digit.test with values produced by other
functions in the module. These all have the invariant that they return a value between 0 and
9.

6



Name:

This page intentionally blank.

7


