Nested patterns

- We can nest patterns as deep as we want
 - Just like we can nest expressions as deep as we want
 - Often avoids hard-to-read, wordy nested case expressions
- So the full meaning of pattern-matching is to compare a pattern against a value for the “same shape” and bind variables to the “right parts”
 - More precise recursive definition coming after examples

Useful example: zip/unzip 3 lists

```haskell
fun zip3 lists = 
case lists of
  ([],[],[]) => []
  | (hd1::tl1,hd2::tl2,hd3::tl3) =>
    (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
  | _ => raise ListLengthMismatch

fun unzip3 triples = 
case triples of
  [] => ([],[],[]) 
  | (a,b,c)::tl => 
    let val (l1, l2, l3) = unzip3 tl
     in
     (a::l1,b::l2,c::l3)
     end
```

More examples to come (see code files)

Style

- Nested patterns can lead to very elegant, concise code
 - Avoid nested case expressions if nested patterns are simpler and avoid unnecessary branches or let-expressions
 - Example: unzip3 and nondecreasing
 - A common idiom is matching against a tuple of datatypes to compare them
 - Examples: zip3 and multisign
- Wildcards are good style: use them instead of variables when you do not need the data
 - Examples: len and multisign

(Most of) the full definition

The semantics for pattern-matching takes a pattern \(p \) and a value \(v \) and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:
- If \(p \) is a variable \(x \), the match succeeds and \(x \) is bound to \(v \)
- If \(p \) is \(_ \), the match succeeds and no bindings are introduced
- If \(p \) is \((p_1,\ldots,p_n) \) and \(v \) is \((v_1,\ldots,v_n) \), the match succeeds if and only if \(p_1 \) matches \(v_1 \), ..., \(p_n \) matches \(v_n \). The bindings are the union of all bindings from the submatches
- If \(p \) is \(C \ p_1 \), the match succeeds if \(v \) is \(C \ v_1 \) (i.e., the same constructor) and \(p_1 \) matches \(v_1 \). The bindings are the bindings from the submatch.
- ... (there are several other similar forms of patterns)

Examples

- Pattern \(a::b::c::d \) matches all lists with \(>= 3 \) elements
- Pattern \(a::b::c::[] \) matches all lists with 3 elements
- Pattern \((a,b), (c,d) :: e \) matches all non-empty lists of pairs of pairs
Exceptions

An exception binding introduces a new kind of exception

```plaintext
exception MyFirstException
exception MySecondException of int * int
```

The `raise` primitive raises (a.k.a. throws) an exception

```plaintext
raise MyFirstException
raise (MySecondException(7,9))
```

A handle expression can handle (a.k.a. catch) an exception

- If doesn't match, exception continues to propagate

```plaintext
e1 handle MyFirstException => e2
e1 handle MySecondException(x,y) => e2
```

Actually…

Exceptions are a lot like datatype constructors...

- Declaring an exception adds a constructor for type `exn`
- Can pass values of `exn` anywhere (e.g., function arguments)
 - Not too common to do this but can be useful
- `handle` can have multiple branches with patterns for type `exn`

Recursion

Should now be comfortable with recursion:

- No harder than using a loop (whatever that is 😎)
- Often much easier than a loop
 - When processing a tree (e.g., evaluate an arithmetic expression)
 - Examples like appending lists
 - Avoids mutation even for local variables
- Now:
 - How to reason about efficiency of recursion
 - The importance of tail recursion
 - Using an accumulator to achieve tail recursion
 - [No new language features here]

Call-stacks

While a program runs, there is a call stack of function calls that have started but not yet returned

- Calling a function `f` pushes an instance of `f` on the stack
- When a call to `f` finishes, it is popped from the stack

These stack-frames store information like the value of local variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same function

Example

```plaintext
fun fact n = if n=0 then 1 else n*fact(n-1)
val x = fact 3
```

```
fact 3: 3*
fact 2: 2*
fact 1: 1*
fact 0
```

Example Revised

```plaintext
fun fact n = 
let fun aux(n,acc) = 
  if n=0 then acc
  else aux(n-1,acc*n) 
  in
  aux(n,1) 
  end
val x = fact 3
```

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)
The call-stacks

| fact 3 | aux(3,1) | aux(2,3) | aux(1,6) | aux(0,6) |
| fact 3: _ | aux(3,1): _ | aux(2,3): _ | aux(1,6): _ | aux(0,6): 6 |

| fact 3: _ | aux(3,1): _ | aux(2,3): _ | aux(1,6): _ | aux(0,6): _ |

An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee’s result and return it without any further evaluation.

ML recognizes these tail calls in the compiler and treats them differently:
- Pop the caller before the call, allowing callee to reuse the same stack space
- (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do tail-call optimization

Moral of tail recursion

- Where reasonably elegant, feasible, and important, rewriting functions to be tail-recursive can be much more efficient
 - Tail-recursive: recursive calls are tail-calls
- There is a methodology that can often guide this transformation:
 - Create a helper function that takes an accumulator
 - Old base case becomes initial accumulator
 - New base case becomes final accumulator

Methodology already seen

| fact 3 | aux(3,1) | aux(2,3) | aux(1,6) | aux(0,6) |

Another example

| fact 3 | aux(3,1) | aux(2,3) | aux(1,6) | aux(0,6) |
And another

```ml
fun rev xs = 
  case xs of
    [] => []
  | x::xs' => (rev xs') @ [x]

fun rev xs = 
  let fun aux(xs,acc) = 
    case xs of
      [] => acc
    | x::xs' => aux(xs',x::acc)
    in aux(xs,[]) end
```

Actually much better

```ml
fun rev xs = 
  case xs of
    [] => []
  | x::xs' => (rev xs') @ [x]
```

• For `fact` and `sum`, tail-recursion is faster but both ways linear time
• Non-tail recursive `rev` is quadratic because each recursive call uses append, which must traverse the first list
 – And 1+2+…+(length-1) is almost length*length/2
 – Moral: beware list-append, especially within outer recursion
• Cons constant-time (and fast), so accumulator version much better

Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space

Most obvious examples are functions that process trees

In these cases, the natural recursive approach is the way to go
 – You could get one recursive call to be a tail call, but rarely worth the complication

Also beware the wrath of premature optimization
 – Favor clear, concise code
 – But do use less space if inputs may be large

What is a tail-call?

The “nothing left for caller to do” intuition usually suffices
 – If the result of `f x` is the “immediate result” for the enclosing function body, then `f x` is a tail call

But we can define “tail position” recursively
 – Then a “tail call” is a function call in “tail position”

Precise definition

A tail call is a function call in tail position

• If an expression is not in tail position, then no subexpressions are

 • In `fun f p = e`, the body `e` is in tail position
 • If `if e1 then e2 else e3` is in tail position, then `e2` and `e3` are in tail position (but `e1` is not). (Similar for case-expressions)
 • If `let b1 ... bn in e end` is in tail position, then `e` is in tail position (but no binding expressions are)
 • Function-call arguments `e1` `e2` are not in tail position
 • …