CSE341: Programming Languages

Lecture 6
Nested Patterns
Exceptions
Tail Recursion

Dan Grossman
Spring 2013
Nested patterns

• We can nest patterns as deep as we want
 – Just like we can nest expressions as deep as we want
 – Often avoids hard-to-read, wordy nested case expressions

• So the full meaning of pattern-matching is to compare a pattern against a value for the “same shape” and bind variables to the “right parts”
 – More precise recursive definition coming after examples
Useful example: zip/unzip 3 lists

```haskell
fun zip3 lists = 
  case lists of 
    ([],[],[]) => []
    | (hd1::tl1,hd2::tl2,hd3::tl3) => 
        (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
    | _ => raise ListLengthMismatch

fun unzip3 triples = 
  case triples of 
    [] => ([],[],[])
    | (a,b,c)::tl => 
        let val (l1, l2, l3) = unzip3 tl 
        in 
            (a::l1,b::l2,c::l3) 
        end

More examples to come (see code files)
```
Style

• Nested patterns can lead to very elegant, concise code
 – Avoid nested case expressions if nested patterns are simpler and avoid unnecessary branches or let-expressions
 • Example: `unzip3` and `nondecreasing`
 – A common idiom is matching against a tuple of datatypes to compare them
 • Examples: `zip3` and `multsign`

• Wildcards are good style: use them instead of variables when you do not need the data
 – Examples: `len` and `multsign`
(Most of) the full definition

The semantics for pattern-matching takes a pattern \(p \) and a value \(v \) and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:

- If \(p \) is a variable \(x \), the match succeeds and \(x \) is bound to \(v \)
- If \(p \) is \(_ \), the match succeeds and no bindings are introduced
- If \(p \) is \((p_1, \ldots, p_n)\) and \(v \) is \((v_1, \ldots, v_n)\), the match succeeds if and only if \(p_1 \) matches \(v_1 \), \ldots, \(p_n \) matches \(v_n \). The bindings are the union of all bindings from the submatches
- If \(p \) is \(C\ p_1 \), the match succeeds if \(v \) is \(C\ v_1 \) (i.e., the same constructor) and \(p_1 \) matches \(v_1 \). The bindings are the bindings from the submatch.
- … (there are several other similar forms of patterns)
Examples

- Pattern a::b::c::d matches all lists with >= 3 elements
- Pattern a::b::c::[] matches all lists with 3 elements
- Pattern ((a,b), (c,d))::e matches all non-empty lists of pairs of pairs
Exceptions

An exception binding introduces a new kind of exception

```plaintext
exception MyFirstException
exception MySecondException of int * int
```

The `raise` primitive raises (a.k.a. throws) an exception

```plaintext
raise MyFirstException
raise (MySecondException(7,9))
```

A handle expression can handle (a.k.a. catch) an exception
- If doesn’t match, exception continues to propagate

```plaintext
e1 handle MyFirstException => e2
e1 handle MySecondException(x,y) => e2
```
Actually…

Exceptions are a lot like datatype constructors…

• Declaring an exception adds a constructor for type \texttt{exn}

• Can pass values of \texttt{exn} anywhere (e.g., function arguments)
 – Not too common to do this but can be useful

• \texttt{handle} can have multiple branches with patterns for type \texttt{exn}
Recursion

Should now be comfortable with recursion:

• No harder than using a loop (whatever that is 😊)

• Often much easier than a loop
 – When processing a tree (e.g., evaluate an arithmetic expression)
 – Examples like appending lists
 – Avoids mutation even for local variables

• Now:
 – How to reason about efficiency of recursion
 – The importance of tail recursion
 – Using an accumulator to achieve tail recursion
 – [No new language features here]
Call-stacks

While a program runs, there is a *call stack* of function calls that have started but not yet returned

– Calling a function \mathcal{f} pushes an instance of \mathcal{f} on the stack
– When a call to \mathcal{f} finishes, it is popped from the stack

These stack-frames store information like the value of local variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same function
Example

fun fact n = if n=0 then 1 else n*fact(n-1)
val x = fact 3

fact 3
fact 3: 3*_
 fact 2
 fact 2: 2*_
 fact 1
 fact 1: 1*_
 fact 0

fact 3: 3*_
fact 3: 3*_
fact 3: 3*_
fact 3: 3*_

fact 2: 2*_
fact 2: 2*_
fact 2: 2*_

fact 1: 1*_
fact 1: 1*_

fact 0: 1
Example Revised

fun fact n =
 let fun aux(n,acc) =
 if n=0
 then acc
 else aux(n-1,acc*n)
 in
 aux(n,1)
 end

val x = fact 3

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)
The call-stacks

```
fact 3
  aux(3,1)

fact 3: __
  aux(3,1): __
  aux(2,3)

fact 3: __
  aux(3,1): __
  aux(2,3): __
  aux(1,6)

fact 3: __
  aux(3,1): __
  aux(2,3): __
  aux(1,6): __
  aux(0,6)

fact 3: __
  aux(3,1): __
  aux(2,3): __
  aux(1,6): __
  aux(0,6): 6

Etc…
```
An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee’s result and return it without any further evaluation.

ML recognizes these tail calls in the compiler and treats them differently:

- Pop the caller before the call, allowing callee to reuse the same stack space
- (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do tail-call optimization
What really happens

fun fact n =
 let fun aux(n,acc) =
 if n=0
 then acc
 else aux(n-1,acc*n)
 in
 aux(n,1)
 end
val x = fact 3

fact 3 aux(3,1) aux(2,3) aux(1,6) aux(0,6)
Moral of tail recursion

• Where reasonably elegant, feasible, and important, rewriting functions to be tail-recursive can be much more efficient
 – Tail-recursive: recursive calls are tail-calls

• There is a methodology that can often guide this transformation:
 – Create a helper function that takes an accumulator
 – Old base case becomes initial accumulator
 – New base case becomes final accumulator
Methodology already seen

```plaintext
fun fact n = 
    let fun aux(n,acc) = 
        if n=0
            then acc
            else aux(n-1,acc*n)
    in
        aux(n,1)
    end
val x = fact 3
```

- `fact 3`
- `aux(3,1)`
- `aux(2,3)`
- `aux(1,6)`
- `aux(0,6)`
Another example

fun sum xs =
 case xs of
 [] => 0
 | x::xs' => x + sum xs'

fun sum xs =
 let fun aux(xs,acc) =
 case xs of
 [] => acc
 | x::xs' => aux(xs',x+acc)
 in
 aux(xs,0)
 end
And another

fun rev xs =
case xs of
 [] => []
 | x::xs' => (rev xs') @ [x]

fun rev xs =
 let fun aux(xs,acc) =
 case xs of
 [] => acc
 | x::xs' => aux(xs',x::acc)
 in
 aux(xs,[])
 end
Actually much better

fun rev xs =
 case xs of
 [] => []
 | x :: xs' => (rev xs') @ [x]

• For fact and sum, tail-recursion is faster but both ways linear time
• Non-tail recursive rev is quadratic because each recursive call uses append, which must traverse the first list
 – And 1+2+…+(length-1) is almost length*length/2
 – Moral: beware list-append, especially within outer recursion
• Cons constant-time (and fast), so accumulator version much better
Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space.

Most obvious examples are functions that process trees.

In these cases, the natural recursive approach is the way to go:
- You could get one recursive call to be a tail call, but rarely worth the complication.

Also beware the wrath of premature optimization:
- Favor clear, concise code
- But do use less space if inputs may be large.
What is a tail-call?

The “nothing left for caller to do” intuition usually suffices
– If the result of $f \ x$ is the “immediate result” for the enclosing function body, then $f \ x$ is a tail call

But we can define “tail position” recursively
– Then a “tail call” is a function call in “tail position”

…
Precise definition

A *tail call* is a function call in *tail position*

- If an expression is not in tail position, then no subexpressions are.
- In `fun f p = e`, the body `e` is in tail position.
- If `if e1 then e2 else e3` is in tail position, then `e2` and `e3` are in tail position (but `e1` is not). (Similar for case-expressions)
- If `let b1 ... bn in e end` is in tail position, then `e` is in tail position (but no binding expressions are).
- Function-call *arguments* `e1 e2` are not in tail position.
- ...