CSE341: Programming Languages

Lecture 2
Functions, Pairs, Lists

Dan Grossman
Spring 2013
Function definitions

Functions: the most important building block in the whole course
 – Like Java methods, have arguments and result
 – But no classes, this, return, etc.

Example function binding:

```haskell
(* Note: correct only if y>=0 *)

fun pow (x : int, y : int) =
  if y=0
    then 1
  else x * pow(x,y-1)
```

Note: The body includes a (recursive) function call: `pow(x,y-1)`
Example, extended

```plaintext
fun pow (x : int, y : int) = 
  if y=0 
  then 1 
  else x * pow(x,y-1)

fun cube (x : int) = 
  pow (x,3)

val sixtyfour = cube 4

val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2
```
Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax

• The use of * in type syntax is not multiplication
 – Example: `int * int -> int`
 – In expressions, * is multiplication: `x * pow(x, y-1)`

• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for mutual recursion (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions
Function bindings: 3 questions

- Syntax:
  ```latex
  \texttt{fun \; x0 \; (x1 : t1, \ldots, \; xn : tn) \; = \; e}
  ```
 - (Will generalize in later lecture)

- Evaluation: \textbf{A function is a value!} (No evaluation yet)
 - Adds \texttt{x0} to environment so \textit{later} expressions can \textit{call} it
 - (Function-call semantics will also allow recursion)

- Type-checking:
 - Adds binding \texttt{x0 : \left(t1 \times \ldots \times tn\right) \rightarrow t} if:
 - Can type-check body \texttt{e} to have type \texttt{t} in the static environment containing:
 - “Enclosing” static environment (earlier bindings)
 - \texttt{x1 : t1, \ldots, \; xn : tn} (arguments with their types)
 - \texttt{x0 : \left(t1 \times \ldots \times tn\right) \rightarrow t} (for recursion)
More on type-checking

fun x0 (x1 : t1, ..., xn : tn) = e

• New kind of type: (t1 * ... * tn) -> t
 – Result type on right
 – The overall type-checking result is to give x0 this type in rest of program (unlike Java, not for earlier bindings)
 – Arguments can be used only in e (unsurprising)

• Because evaluation of a call to x0 will return result of evaluating e, the return type of x0 is the type of e

• The type-checker “magically” figures out t if such a t exists
 – Later lecture: Requires some cleverness due to recursion
 – More magic after hw1: Later can omit argument types too
Function Calls

A new kind of expression: 3 questions

Syntax: e0 (e1,…,en)
 – (Will generalize later)
 – Parentheses optional if there is exactly one argument

Type-checking:
If:
 – e0 has some type (t1 * ... * tn) -> t
 – e1 has type t1, ..., en has type tn
Then:
 – e0(e1,…,en) has type t
Example: pow(x,y-1) in previous example has type int
Function-calls continued

\[e_0(e_1, \ldots, e_n) \]

Evaluation:

1. (Under current dynamic environment,) evaluate \(e_0 \) to a function \(\text{fun } x_0 \ (x_1 : t_1, \ldots, x_n : t_n) = e \)
 - Since call type-checked, result will be a function

2. (Under current dynamic environment,) evaluate arguments to values \(v_1, \ldots, v_n \)

3. Result is evaluation of \(e \) in an environment extended to map \(x_1 \) to \(v_1 \), \(\ldots, x_n \) to \(v_n \)
 - (“An environment” is actually the environment where the function was defined, and includes \(x_0 \) for recursion)
Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
 - Now ways to build up data with multiple parts
 - This is essential
 - Java examples: classes with fields, arrays

Now:
 - Tuples: fixed “number of pieces” that may have different types

Then:
 - Lists: any “number of pieces” that all have the same type

Later:
 - Other more general ways to create compound data
Pairs (2-tuples)

Need a way to *build* pairs and a way to *access* the pieces

Build:

- Syntax: \((e_1, e_2)\)

- Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1, v_2)\)
 - A pair of values is a value

- Type-checking: If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a \times t_b\)
 - A new kind of type
Pairs (2-tuples)

Need a way to \textit{build} pairs and a way to \textit{access} the pieces

\textbf{Access:}

\begin{itemize}
\item Syntax: \#1 \textit{e} and \#2 \textit{e}
\item Evaluation: Evaluate \textit{e} to a pair of values and return first or second piece
 \begin{itemize}
 \item Example: If \textit{e} is a variable \textit{x}, then look up \textit{x} in environment
 \end{itemize}
\item Type-checking: If \textit{e} has type \textit{ta} * \textit{tb}, then \#1 \textit{e} has type \textit{ta} and \#2 \textit{e} has type \textit{tb}
\end{itemize}
Examples

Functions can take and return pairs

```latex
fun swap (pr : int*bool) =
    (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
    (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
    (x div y, x mod y)

fun sort_pair (pr : int*int) =
    if (#1 pr) < (#2 pr)
    then pr
    else (#2 pr, #1 pr)
```
Tuples

Actually, you can have *tuples* with more than two parts

- A new feature: a generalization of pairs

- \((e_1, e_2, \ldots, e_n)\)
- \(t_a \times t_b \times \ldots \times t_n\)
- \(#1 \ e, \ #2 \ e, \ #3 \ e, \ \ldots\)

Homework 1 uses triples of type \(\text{int} \times \text{int} \times \text{int}\) a lot
Nesting

Pairs and tuples can be nested however you want
– Not a new feature: implied by the syntax and semantics

```
val x1 = (7, (true, 9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1) (* bool *)
val x3 = (#2 x1) (* bool*int *)
val x4 = ((3, 5), ((4, 8), (0, 0))) (* (int*int)*((int*int)*(int*int)) *)
```
Lists

• Despite nested tuples, the type of a variable still “commits” to a particular “amount” of data

In contrast, a list:
 – Can have any number of elements
 – But all list elements have the same type

Need ways to build lists and access the pieces…
Building Lists

• The empty list is a value:

\[
\text{[]}
\]

• In general, a list of values is a value; elements separated by commas:

\[
[v_1, v_2, \ldots, v_n]
\]

• If \(e_1\) evaluates to \(v\) and \(e_2\) evaluates to a list \([v_1, \ldots, v_n]\), then \(e_1 :: e_2\) evaluates to \([v, \ldots, v_n]\)

\(e_1 :: e_2\) (* pronounced “cons” *)
Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- **null e** evaluates to true if and only if e evaluates to []

- If e evaluates to [v1,v2,…,vn] then **hd e** evaluates to v1
 - (raise exception if e evaluates to [])

- If e evaluates to [v1,v2,…,vn] then **tl e** evaluates to [v2,…,vn]
 - (raise exception if e evaluates to [])
 - Notice result is a list
Type-checking list operations

Lots of new types: For any type t, the type $t\text{ list}$ describes lists where all elements have type t

- Examples: int list bool list int list list
 $(\text{int }\ast\text{ int})\text{ list}$ $(\text{int list }\ast\text{ int})\text{ list}$

- So $[]$ can have type $t\text{ list list}$ for any type
 - SML uses type $'\text{a list}$ to indicate this (“quote a” or “alpha”)

- For $e_1::e_2$ to type-check, we need a t such that e_1 has type t and e_2 has type $t\text{ list}$. Then the result type is $t\text{ list}$

- $\text{null : 'a list }\rightarrow\text{ bool}$
- $\text{hd : 'a list }\rightarrow\text{ 'a}$
- $\text{tl : 'a list }\rightarrow\text{ 'a list}$
Example list functions

fun sum_list (xs : int list) =
 if null xs
 then 0
 else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =
 if x=0
 then []
 else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =
 if null xs
 then ys
 else hd(xs) :: append(tl(xs), ys)
Recursion again

Functions over lists are usually recursive
 – Only way to “get to all the elements”

• What should the answer be for the empty list?
• What should the answer be for a non-empty list?
 – Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
 – You create a list out of smaller lists
Lists of pairs

Processing lists of pairs requires no new features. Examples:

```plaintext
fun sum_pair_list (xs : (int*int) list) = 
  if null xs
  then 0
  else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) = 
  if null xs
  then []
  else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) = 
  if null xs
  then []
  else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) = 
  (sum_list (firsts xs)) + (sum_list (seconds xs))
```