
CSE341: Programming Languages

Lecture 23

Multiple Inheritance, Mixins, Interfaces,

Abstract Methods

Dan Grossman

Spring 2013

What next?

Have used classes for OOP's essence: inheritance, overriding,

dynamic dispatch

Now, what if we want to have more than just 1 superclass

• Multiple inheritance: allow > 1 superclasses

– Useful but has some problems (see C++)

• Ruby-style mixins: 1 superclass; > 1 method providers

– Often a fine substitute for multiple inheritance and has fewer

problems (see also Scala traits)

• Java/C#-style interfaces: allow > 1 types

– Mostly irrelevant in a dynamically typed language, but fewer

problems

Spring 2013 2 CSE341: Programming Languages

Multiple Inheritance

• If inheritance and overriding are so useful, why limit ourselves to one

superclass?

– Because the semantics is often awkward (this topic)

– Because it makes static type-checking harder (not discussed)

– Because it makes efficient implementation harder (not discussed)

• Is it useful? Sure!

– Example: Make a ColorPt3D by inheriting from Pt3D and

ColorPt (or maybe just from Color)

– Example: Make a StudentAthlete by inheriting from Student

and Athlete

– With single inheritance, end up copying code or using non-OOP-

style helper methods

Spring 2013 3 CSE341: Programming Languages

Trees, dags, and diamonds

• Note: The phrases subclass, superclass can be ambiguous

– There are immediate subclasses, superclasses

– And there are transitive subclasses, superclasses

• Single inheritance: the class hierarchy is a tree

– Nodes are classes

– Parent is immediate superclass

– Any number of children allowed

• Multiple inheritance: the class hierarchy no longer a tree

– Cycles still disallowed (a directed-acyclic graph)

– If multiple paths show that X is a (transitive) superclass

of Y, then we have diamonds

Spring 2013 4 CSE341: Programming Languages

A

B C D

E

X

Y

V W

Z

What could go wrong?

• If V and Z both define a method m,

 what does Y inherit? What does super mean?

– Directed resends useful (e.g., Z::super)

• What if X defines a method m that Z but not V overrides?

– Can handle like previous case, but sometimes undesirable
(e.g., ColorPt3D wants Pt3D's overrides to “win”)

• If X defines fields, should Y have one copy of them (f) or two

(V::f and Z::f)?

– Turns out each behavior can be desirable (next slides)

– So C++ has (at least) two forms of inheritance

Spring 2013 5 CSE341: Programming Languages

X

Y

V W

Z

3DColorPoints

If Ruby had multiple inheritance, we would want ColorPt3D to

inherit methods that share one @x and one @y

Spring 2013 6 CSE341: Programming Languages

class Pt

 attr_accessor :x, :y

 …

end

class ColorPt < Pt

 attr_accessor :color

 …

end

class Pt3D < Pt

 attr_accessor :z

 … # override some methods

end

class ColorPt3D < Pt3D, ColorPt # not Ruby!

end

ArtistCowboys

This code has Person define a pocket for subclasses to use, but

an ArtistCowboy wants two pockets, one for each draw method

Spring 2013 7 CSE341: Programming Languages

class Person

 attr_accessor :pocket

 …

end

class Artist < Person # pocket for brush objects

 def draw # access pocket

 …

end

class Cowboy < Person # pocket for gun objects

 def draw # access pocket

 …

end

class ArtistCowboy < Artist, Cowboy # not Ruby!

end

Mixins

• A mixin is (just) a collection of methods

– Less than a class: no instances of it

• Languages with mixins (e.g., Ruby modules) typically let a class

have one superclass but include number of mixins

• Semantics: Including a mixin makes its methods part of the class

– Extending or overriding in the order mixins are included in the

class definition

– More powerful than helper methods because mixin methods
can access methods (and instance variables) on self not

defined in the mixin

Spring 2013 8 CSE341: Programming Languages

Example

Spring 2013 9 CSE341: Programming Languages

module Doubler

 def double

 self + self # assume included in classes w/ +

 end

end

class String

 include Doubler

end

class AnotherPt

 attr_accessor :x, :y

 include Doubler

 def + other

 ans = AnotherPt.new

 ans.x = self.x + other.x

 ans.y = self.y + other.y

 ans

end

Lookup rules

Mixins change our lookup rules slightly:

• When looking for receiver obj's method m, look in obj's class,

then mixins that class includes (later includes shadow), then obj's

superclass, then the superclass' mixins, etc.

• As for instance variables, the mixin methods are included in the

same object

– So usually bad style for mixin methods to use instance
variables since a name clash would be like our CowboyArtist

pocket problem (but sometimes unavoidable?)

Spring 2013 10 CSE341: Programming Languages

The two big ones

The two most popular/useful mixins in Ruby:

• Comparable: Defines <, >, ==, !=, >=, <= in terms of <=>

• Enumerable: Defines many iterators (e.g., map, find) in terms

of each

Great examples of using mixins:

– Classes including them get a bunch of methods for just a

little work

– Classes do not “spend” their “one superclass” for this

– Do not need the complexity of multiple inheritance

• See the code for some examples

Spring 2013 11 CSE341: Programming Languages

Replacement for multiple inheritance?

• A mixin works pretty well for ColorPt3D:

– Color a reasonable mixin except for using an instance variable

• A mixin works awkwardly-at-best for ArtistCowboy:

– Natural for Artist and Cowboy to be Person subclasses

– Could move methods of one to a mixin, but it is odd style and

still does not get you two pockets

Spring 2013 12 CSE341: Programming Languages

module Color

 attr_accessor :color

end

module ArtistM …

class Artist < Person

 include ArtistM

class ArtistCowboy < Cowboy

 include ArtistM

Statically-Typed OOP

• Now contrast multiple inheritance and mixins with Java/C#-style

interfaces

• Important distinction, but interfaces are about static typing,

which Ruby does not have

• So will use Java code after quick introduction to static typing for

class-based OOP…

– Sound typing for OOP prevents “method missing” errors

Spring 2013 13 CSE341: Programming Languages

Classes as Types

• In Java/C#/etc. each class is also a type

• Methods have types for arguments and result

• If C is a (transitive) subclass of D, then C is a subtype of D

– Type-checking allows subtype anywhere supertype allowed

– So can pass instance of C to a method expecting instance of D

Spring 2013 14 CSE341: Programming Languages

class A {

 Object m1(Example e, String s) {…}

 Integer m2(A foo, Boolean b, Integer i) {…}

}

Interfaces are Types

• An interface is not a class; it is only a type

– Does not contain method definitions, only their signatures

(types)

• Unlike mixins

– Cannot use new on an interface

• Like mixins

Spring 2013 15 CSE341: Programming Languages

interface Example {

 void m1(int x, int y);

 Object m2(Example x, String y);

}

Implementing Interfaces

• A class can explicitly implement any number of interfaces

– For class to type-check, it must implement every method in

the interface with the right type

• More on allowing subtypes later!

– Multiple interfaces no problem; just implement everything

• If class type-checks, it is a subtype of the interface

Spring 2013 16 CSE341: Programming Languages

class A implements Example {

 public void m1(int x, int y) {…}

 public Object m2(Example e, String s) {…}

}

class B implements Example {

 public void m1(int pizza, int beer) {…}

 public Object m2(Example e, String s) {…}

}

Multiple interfaces

• Interfaces provide no methods or fields

– So no questions of method/field duplication when

implementing multiple interfaces, unlike multiple inheritance

• What interfaces are for:

– “Caller can give any instance of any class implementing I”

• So callee can call methods in I regardless of class

– So much more flexible type system

• Interfaces have little use in a dynamically typed language

– Dynamic typing already much more flexible, with trade-offs

we studied

Spring 2013 17 CSE341: Programming Languages

Connections

Let’s now answer these questions:

• What does a statically typed OOP language need to support

“required overriding”?

• How is this similar to higher-order functions?

• Why does a language with multiple inheritance (e.g., C++) not

need Java/C#-style interfaces?

[Explaining Java’s abstract methods / C++’s pure virtual methods]

Spring 2013 18 CSE341: Programming Languages

Required overriding

Often a class expects all subclasses to override some method(s)

– The purpose of the superclass is to abstract common

functionality, but some non-common parts have no default

A Ruby approach:

– Do not define must-override methods in superclass

– Subclasses can add it

– Creating instance of superclass can cause method-missing

errors

Spring 2013 19 CSE341: Programming Languages

do not use A.new

all subclasses should define m2

class A

 def m1 v

 … self.m2 e …

 end

end

Static typing

• In Java/C#/C++, prior approach fails type-checking

– No method m2 defined in superclass

– One solution: provide error-causing implementation

– Better: Use static checking to prevent this error…

Spring 2013 20 CSE341: Programming Languages

class A

 def m1 v

 … self.m2 e …

 end

 def m2 v

 raise "must be overridden"

 end

end

Abstract methods

• Java/C#/C++ let superclass give signature (type) of method

subclasses should provide

– Called abstract methods or pure virtual methods

– Cannot creates instances of classes with such methods

• Catches error at compile-time

• Indicates intent to code-reader

• Does not make language more powerful

Spring 2013 21 CSE341: Programming Languages

abstract class A {

 T1 m1(T2 x) { … m2(e); … }

 abstract T3 m2(T4 x);

}

class B extends A {

 T3 m2(T4 x) { … }

}

Passing code to other code

• Abstract methods and dynamic dispatch: An OOP way to have

subclass “pass code” to other code in superclass

• Higher-order functions: An FP way to have caller “pass code” to

callee

Spring 2013 22 CSE341: Programming Languages

abstract class A {

 T1 m1(T2 x) { … m2(e); … }

 abstract T3 m2(T4 x);

}

class B extends A {

 T3 m2(T4 x) { … }

}

fun f (g,x) = … g e …

fun h x = … f((fn y => …),…)

No interfaces in C++

• If you have multiple inheritance and abstract methods, you do

not also need interfaces

• Replace each interface with a class with all abstract methods

• Replace each “implements interface” with another superclass

So: Expect to see interfaces only in statically typed OOP without

multiple inheritance

– Not Ruby

– Not C++

Spring 2013 23 CSE341: Programming Languages

