
CSE341: Programming Languages

Lecture 21
Dynamic Dispatch Precisely,

and Manually in Racket

Dan Grossman
Spring 2013

Dynamic dispatch

Dynamic dispatch
– Also known as late binding or virtual methods

– Call self.m2() in method m1 defined in class C can

resolve to a method m2 defined in a subclass of C

– Most unique characteristic of OOP

Need to define the semantics of method lookup as carefully as we
defined variable lookup for our PLs

Spring 2013 2 CSE341: Programming Languages

Review: variable lookup

Rules for “looking things up” is a key part of PL semantics

• ML: Look up variables in the appropriate environment
– Lexical scope for closures
– Field names (for records) are different: not variables

• Racket: Like ML plus let, letrec

• Ruby:
– Local variables and blocks mostly like ML and Racket
– But also have instance variables, class variables, methods

(all more like record fields)
• Look up in terms of self, which is special

Spring 2013 3 CSE341: Programming Languages

Using self

• self maps to some “current” object

• Look up instance variable @x using object bound to self

• Look up class variables @@x using object bound to self.class

• Look up methods…

Spring 2013 4 CSE341: Programming Languages

Ruby method lookup
The semantics for method calls also known as message sends

e0.m(e1,…,en)
1. Evaluate e0, e1, …, en to objects obj0, obj1, …, objn

– As usual, may involve looking up self, variables, fields, etc.
2. Let C be the class of obj0 (every object has a class)
3. If m is defined in C, pick that method, else recur with the superclass

of C unless C is already Object
– If no m is found, call method_missing instead

• Definition of method_missing in Object raises an error
4. Evaluate body of method picked:

– With formal arguments bound to obj1, …, objn
– With self bound to obj0 -- this implements dynamic dispatch!

Note: Step (3) complicated by mixins: will revise definition later

Spring 2013 5 CSE341: Programming Languages

Punch-line again

e0.m(e1,…,en)

To implement dynamic dispatch, evaluate the method body with
self mapping to the receiver (result of e0)

• That way, any self calls in body of m use the receiver's class,

– Not necessarily the class that defined m

• This much is the same in Ruby, Java, C#, Smalltalk, etc.

Spring 2013 6 CSE341: Programming Languages

Comments on dynamic dispatch

• This is why distFromOrigin2 worked in PolarPoint

• More complicated than the rules for closures
– Have to treat self specially
– May seem simpler only if you learned it first
– Complicated does not necessarily mean inferior or superior

Spring 2013 7 CSE341: Programming Languages

Static overloading

In Java/C#/C++, method-lookup rules are similar, but more
complicated because > 1 methods in a class can have same name

– Java/C/C++: Overriding only when number/types of
arguments the same

– Ruby: same-method-name always overriding

Pick the “best one” using the static (!) types of the arguments

– Complicated rules for “best”
– Type-checking error if there is no “best”

Relies fundamentally on type-checking rules

– Ruby has none

Spring 2013 8 CSE341: Programming Languages

A simple example, part 1
In ML (and other languages), closures are closed

So we can shadow odd, but any call to the closure bound to odd
above will “do what we expect”

– Does not matter if we shadow even or not

Spring 2013 9 CSE341: Programming Languages

fun even x = if x=0 then true else odd (x-1)
and odd x = if x=0 then false else even (x-1)

(* does not change odd – too bad; this would
improve it *)

fun even x = (x mod 2)=0

(* does not change odd – good thing; this would
break it *)

fun even x = false

A simple example, part 2
In Ruby (and other OOP languages), subclasses can change the
behavior of methods they do not override

Spring 2013 10 CSE341: Programming Languages

class A
 def even x
 if x==0 then true else odd (x-1) end
 end
 def odd x
 if x==0 then false else even (x-1) end
 end
end
class B < A # improves odd in B objects
 def even x ; x % 2 == 0 end
end
class C < A # breaks odd in C objects
 def even x ; false end
end

The OOP trade-off

Any method that makes calls to overridable methods can have its
behavior changed in subclasses even if it is not overridden

– Maybe on purpose, maybe by mistake
– Observable behavior includes calls-to-overridable methods

• So harder to reason about “the code you're looking at”

– Can avoid by disallowing overriding
• “private” or “final” methods

• So easier for subclasses to affect behavior without copying code

– Provided method in superclass is not modified later

Spring 2013 11 CSE341: Programming Languages

Manual dynamic dispatch

Now: Write Racket code with little more than pairs and functions
that acts like objects with dynamic dispatch

Why do this?

– (Racket actually has classes and objects available)

• Demonstrates how one language's semantics is an idiom in
another language

• Understand dynamic dispatch better by coding it up
– Roughly how an interpreter/compiler might

Analogy: Earlier optional material encoding higher-order functions
using objects and explicit environments

Spring 2013 12 CSE341: Programming Languages

Our approach

Many ways to do it; our code does this:
– An “object” has a list of field pairs and a list of method pairs

– Field-list element example:
(mcons 'x 17)

– Method-list element example:
(cons 'get-x (lambda (self args) …))

Notes:
• Lists sufficient but not efficient
• Not class-based: object has a list of methods, not a class that

has a list of methods [could do it that way instead]
• Key trick is lambdas taking an extra self argument

– All “regular” arguments put in a list args for simplicity
Spring 2013 13 CSE341: Programming Languages

(struct obj (fields methods))

A point object bound to x

Spring 2013 14 CSE341: Programming Languages

fields methods
x

'x
mcar

 -4
mcdr

car

cdr

'y
mcar

 0
mcdr

car
'()
cdr

'get-x
 car

cdr

car

cdr

'set-x

car

cdr

car cdr

'distToOrigin

car

cdr

car
'()
cdr

…

�(self args)… �(self args)… �(self args)…

Key helper functions

Now define plain Racket functions to get field, set field, call method

Spring 2013 15 CSE341: Programming Languages

(define (assoc-m v xs)
 …) ; assoc for list of mutable pairs

(define (get obj fld)
 (let ([pr (assoc-m fld (obj-fields obj))]))
 (if pr (mcdr pr) (error …))))

(define (set obj fld v)
 (let ([pr (assoc-m fld (obj-fields obj))]))
 (if pr (set-mcdr! pr v) (error …))))

(define (send obj msg . args)
 (let ([pr (assoc msg (obj-methods obj))]))
 (if pr ((cdr pr) obj args) (error …))))

(send x 'distToOrigin)

Spring 2013 16 CSE341: Programming Languages

fields methods
x

'x
mcar

 -4
mcdr

car

cdr

'y
mcar

 0
mcdr

car
'()
cdr

'get-x
 car

cdr

car

cdr

'set-x

car

cdr

car cdr

'distToOrigin

car

cdr

car
'()
cdr

…

�(self args)… �(self args)… �(self args)…

Evaluate body of
�(self args)…
with self bound to
entire object
(and args bound to '())

Constructing points
• Plain-old Racket function can take initial field values and build a

point object
– Use functions get, set, and send on result and in “methods”
– Call to self: (send self 'm …)
– Method arguments in args list

Spring 2013 17 CSE341: Programming Languages

(define (make-point _x _y)
 (obj
 (list (mcons 'x _x)
 (mcons 'y _y))
 (list (cons 'get-x (��(self args)(get self 'x)))
 (cons 'get-y (�(self args)(get self 'y)))
 (cons 'set-x (�(self args)(…)))
 (cons 'set-y (�(self args)(…)))
 (cons 'distToOrigin (�(self args)(…))))))

“Subclassing”

• Can use make-point to write make-color-point or
make-polar-point functions (see code)

• Build a new object using fields and methods from “super”
“constructor”
– Add new or overriding methods to the beginning of the list

• send will find the first matching method
– Since send passes the entire receiver for self, dynamic

dispatch works as desired

Spring 2013 18 CSE341: Programming Languages

Why not ML?

• We were wise not to try this in ML!

• ML's type system does not have subtyping for declaring a polar-
point type that “is also a” point type
– Workarounds possible (e.g., one type for all objects)
– Still no good type for those self arguments to functions

• Need quite sophisticated type systems to support
dynamic dispatch if it is not built into the language

• In fairness, languages with subtyping but not generics make it
analogously awkward to write generic code

Spring 2013 19 CSE341: Programming Languages

