
CSE 341 — Java Generics Discussion Questions
1. Consider the following Java code fragments. (The first 3 lines are the same for all of them; it’s just the last line

that is different.) In each case, does the code compile correctly? If so, does it execute without error, or is there
an exception?

Point[] a = new Point[10];
Object[] b;
b = a;
b[0] = new Point(10,20);

Point[] a = new Point[10];
Object[] b;
b = a;
b[0] = "hi there";

Point[] a = new Point[10];
Object[] b;
b = a;
a[0] = "hi there";

2. What about code that is analogous to that in Question 1, but that uses ArrayList? For example:

ArrayList<Point> a = new ArrayList<Point>();
ArrayList<Object> b;
b = a;
b.add(new Point(10,20));

3. Sketch the class definition and method signatures for a Stack class, parameterized by the type of element on the
stack. Give the method signatures for push, pop, and isEmpty.

4. Sketch the class definition and method signatures for a Dictionary class, which allows one to store or look up a
value indexed by a key. Give the method signatures for get, put, isEmpty, keys, and values. The last
two methods should return parameterized collections. (This class is similar to the builtin class HashMap in the
Java collections library.)

5. Joe Mocha is defining an interface Appendable that includes an append method. He then defines two
classes, MyString and MyList, which both implement Appendable. He wants Java’s type system to
allow a MyString to be appended to a MyString, and a MyList to be appended to a MyList, but not a
MyString to a MyList, or a MyList to a MyString.

Here is his definition of Appendable:

interface Appendable {
Appendable append(Appendable a);

}

What is wrong with this definition? What is a correct one?

Also write a definition for a class MyString that uses the revised definition of Appendable. (Just put . . . in
the body of the method — we only care about the header.)

1


