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(append([a], [b, e}, L) I true) 

.lJ. A2 

([a] = [FIR], [b, e] = Y, L = [FIZ], append(R, Y, Z) I true)
 

.lJ.
 
([b, e] = Y, L = [FIZ], append(R, Y, Z) IF = a /\ R = [])
 

.lJ.
 
(L = [FIZ], append(R, Y, Z) IF = a /\ R = []/\ Y = [b, e])
 

.lJ.
 
(append(R, Y, Z) IF = a /\ R = []/\ Y = [b, e]/\ L = [a/Z])
 

.lJ. Al 
(R = [], Y = y', Z = Y' I F = a /\ R = [] /\ Y = [b,e]/\ L = [aIZ])
 

.lJ.
 
(Y = Y', Z = Y' I F = a /\ R = [] /\ Y = [b, e] /\ L = [aIZ])
 

.lJ.
 
(Z = Y' I F = a /\ R = [] /\ Y = [b,e]/\ L = [aIZ] /\ Y' = [b,e])
 

.lJ.
 
(0 I F = a /\ R = [] /\ Y = [b, e] /\ L = [a, b, e] /\ Y' = Ib, e]/\ Z = [b, e])
 

Figure 6.4 Derivation for append ([a] , [b. c] •L) 

the goal 

append(X,Y, [1.2]). 

will return the answers 

x = [J /\ 1" = [1,2]' 
X = [lJ /\ 1" = [2], and 

X = [1,2] /\ 1" = [J. 

As another example of a simple list manipulation program, consider how we might 
model the alldifferent constraint introduced in Section 3.5. 

Ezample 6.3 
The user-defined constraint alldifferent-.neq([VI , ... , VnJ) is intended to hold if 
each of the elements in the list, VI to v", is different. We can define this in terms 
of the primitive constraint =:f as follows: 

alldifferent-.neq([]) .
 
alldifferent-.neq([Y IYs]) not~ember(Y,Ys), alldifferent-.neq(Ys).
 

not~ember<-, []).
 
not~ember(X, [YIYs]) :- X =:f Y, not~ember(X, Ys).
 

Like many list manipulation predicates, alldifferent-.neq has two rules. The first 
is the base case for when the list is empty and the second is a recursive rule for a 
non-empty list. The base case is simple: every item ill an empty list is (vacuously) 
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different. The recursive case is a little more complex: all items in the list [YIYs] 
are different if Y does not equal any item in the list 1"s and all items in 1"s are 
different. 

We use the auxiliary predicate not--lllember to check that 1" does not equal any 
element of the list 1"s. It also consists of two rules: a base case for the empty list 
and a recursive rule for the non-empty list. The base case states that every element 
is not a member of the empty list. The recursive case states that X is not a member 
of the list [1"11"sJ if it does not equal 1" and it is not a member of the list 1"s . 

Usually alldifferent-.neq will be applied to a list of variables, to ensure that 
none of them can take the same value. The goal alldifferent-.neq ( [A, B, C] ), for 
example, has the single answer A =:f B /\ A =:f C /\ B =:f C. 

By using lists we can build models composed of complex structured data. A 
data structure of interest in many mathematical and engineering applications is 
the matrix. For instance, the matrix is the standard way to represent rectangular 
grids used in finite modelling. One simple representation of a matrix is as a list of 
lists. We can now return to the motivating example given at the beginning of this 
chapter and give a program that models a plate using an arbitrary sized grid of 
temperatures. 

Ezample 6.4 
The following program ensures that every interior point of the grid has a value 
equal to the average of its four neighbours. It uses case based reasoning similar to 
append except that the two cases are whether the list has three or more clements or 
exactly two clements. The predicate rows iterates through the rows in the matrix, 
selecting each three adjacent rows in the matrix and passing these as arguments to 
cols. The predicate cols iterates through the points in these rows, constraining 
the middle point M of a square of nine points in the matrix to equal the c.verage 
of its orthogollailleighbours. 

rows([_, J). (RWl) 
rows([R1,R2,R3IRs]) cols(R1, R2, R3), rows([R2,R3IRsJ). (RW2) 

cols( [_, J, L, -], [_, J). (CLl) 
cols([TL,T,TR/Ts], [ML,M,MRIMs], [BL,B,BR/Bs]) (CL2) 

M = (T + ML + MR + B) / 4, 
cols([T,TRITs], [M,MRIMs], [B,BRIBs]). 

The metal plate shown in Figure 6.1 can be represented by the following list of lists, 
which we ahbreviate to plate: 
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[[0. 100. 100. 100. 100. 100, 0] , 

[0. 0], 

[0. 0], 

[0. 0], 

[0. 0], 

[0. 0. 0. 0. 0. 0. 0]]. 

In our query we specify the temperatures of the points on the outside edges, but the 
temperature of each interior point is a distinct unknown variable which we indicate 
by using the underscore. Evaluation of the goal 

P = plate. rows (P) 

results in the answer 
[[0.00. 100.00. 100.00. 100.00. 100.00, 100.00, 0.00] 

[0.00. 46.61. 62.48, 66.43, 62.48, 46.61. 0.00] 

[0.00. 23.97, 36.87, 40.76. 36.87. 23.97. 0.00]
P = 

[0.00, 12.39. 20.27. 22.88. 20.27. 12.39, 0.00] 
[0.00, 5.34. 8.95. 10.19, 8.95. 5.34, 0.00] 

[0.00. 0.00, 0.00, 0.00, 0.00. 0.00. 0.00]]. 

Now let us examine the way in which the program works. On selection of the 
user-defined constraint rows (p) , evaluation of the first rule, RW1, fails because it 
constrains P to have exactly two rows. Execution of the rule RW2 proceeds by 
setting R1 to the first row in P, R2 to the second row, R3 to the third row and 
Rs to.the remaining (4th to 6th) rows. Then cols(R1, R2, R3) is called. Initially 
the rule (CL1) is tried, but this fails since it constrains R1, R2, and R3 to be lists 
of only two elements. Next rule CL2 is tried. In effect, this rule sets the variables 
T L, T, T R, M L, M, M R, BL, B, BR to bc the nine clement gtid comprising the first 
three elements of each of the rows R1, R2 and R3. 

TL T TRR1=[ ITs] 
ML M MRR2= [ IMs] 
BL B BRR3= [ IBs] 

The variables Ta, M sand Bs refer to the remaining elements in the top, middle 
and bottom of the three rows. Now thc constraint M = (T + M L + M R + B)/4 
is added to the constraint store, cnforcing that the middle point is the average of 
its orthogonal neighbours. Next the recursive call to cols is passed the top, middle 
and bottom rows minus tlwir first elements. Whcn matching with the rule CL2 the 
grid is shifted one place to the right. When then~ arc only two elements left in each 
of the three lists the original cols (R1. R2. R3) call finishes. Next rows is called 
with the first row of the plate rellloved, in effect moving the computation down one 
row. Eventnally, when there are only two rows left, evaluation finishes. 
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Both of the last two programs illustrate an important constraint programming 
technique. Not only can we make use of data structures to store fixed values, we 
can also use them to store variables to represent data that is prcscntly unknown. 

6.3 Association Lists 

Lists allow the constraint programmer to represent and manipulate collections of 
objects. Wc can store any kind of object in a list, ranging from simple objectH such 
as numbers to more complex objects such as records. Lists of records are often 
useful since they provide a way of accessing information by associating it with a 
key. 

Consider a simple phone record with two parts: a nallle and phone number. 
We can encode this record as the tree made from the binary conHtructor p whose 
first argumcnt is the name of the person and whose second argument is the phOIW 
number. For example, the collection of phone numbers 

peter 5551616 

kim 5559282 

nicole 5559282 

can be represented by the list of records below, abbreviated by pho1tel-ist: 

[p(petel', 5551616),p(hm, 5559282),p(lIicole, 5559282)] 

The phone list gives a simple example of an association list data structuw. 
For each name there is an associated phone number, and each phone llUmber is 
associated with one or more names. The IIlost basic operation on an aHsoeiation list 
is to find the information, in this case the telephone number, corresponding to a 
key, in this ease a name. 

The member (X. L) predicate defined in the program below constrains X to Iw a 
IIlcmber of the IiHt L. It can be used to find information in an association liHt, for 
example to look lip the phone number corresponding to a name. 

member (X , [X I J). (E1) 

member(X. L I R]) member (X. R). (E2) 

The first rule holds when X is the first e1emcnt of the list L. The second rule holds 
when X is not the tirst element of L but iH a member of the rest of till' list. 

The goal member(p(kim, N) .phonelisO finds the phone number, N, of killt. TIll' 
(partially) simplified derivation tree is shown in Figure 6.5. Notice how infonllal ion 
cau flow is in both din'ctions. The term p(kim, N) causes faih'rp when (~quatpd to 
the tpnn p(pl'lCI', 5551616). Convprsely when the tenll p(kim, 5559282) is ('qual('d 
wilh p(kim., N) tlll'lI N iH ('()nstraiued to bp 5559282. 

\V(, ha\'P aln'ady S('PII how to look lip informatioll in an aSHocial ion Jist. TIlt' 
pn'dicalP lookup usps member to tind the co!Tpc( ('uny ill till' list. Tilis is ('aptun'd 


