
A brief introduction to
the State Pattern

(a software engineering digression)
Emily Fortuna

(motivating example borrowed from Head First Design Patterns)

Thursday, June 2, 2011

Suppose electronic gumball
machines are the next big thing...

has
quarter

no
quarter

gumball
sold

out of
gumballs insert q

uarte
r

eject q
uarte

r

turn crank

dispense gumball

gumballs > 0

gumballs = 0

Thursday, June 2, 2011

Great, let’s write some code!

gather all of the states, and create instance variables
to hold the states:

(Note: this method is not our final solution)

has
quarter

no
quarter

gumball
sold

out of
gumballs

SOLD_OUT = 0
NO_QUARTER = 1
HAS_QUARTER = 2
SOLD = 3

Thursday, June 2, 2011

Now, what are the actions that can happen
in this system?

insert quarter eject quarter
turn crankdispense gumball

def insertQuarter
 if (state == HAS_QUARTER)
 puts “you can’t insert another quarter”
 elsif (state == SOLD_OUT)
 puts “You can’t insert a quarter; U no can haz gumballs :-(“
 elsif (state == SOLD)
 puts “Please wait as we’re already giving you a gumball... OM NOM”
 elsif (state == NO_QUARTER)
 state = HAS_QUARTER
 puts “You inserted a quarter!”
 end
end

So these are our methods:

Thursday, June 2, 2011

But that’s only one method!
def insertQuarter
 # insert quarter code
end

def ejectQuarter
 # eject quarter code
end

def turnCrank
 # turn crank code
end

def dispense
 # dispense code
end

class GumballMachine

end
Thursday, June 2, 2011

But that’s only one method!
def insertQuarter
 # insert quarter code
end

def ejectQuarter
 # eject quarter code
end

def turnCrank
 # turn crank code
end

def dispense
 # dispense code
end

OMG so

many if/else

cases!!!

class GumballMachine

end
Thursday, June 2, 2011

It gets WORSE if you need
to add more states:

SOLD_OUT = 0
NO_QUARTER = 1
HAS_QUARTER = 2
SOLD = 3

def insertQuarter
 if (state == HAS_QUARTER)
 puts “you can’t insert another quarter”
 elsif (state == SOLD_OUT)
 puts “You can’t insert a quarter; U no can haz gumballs :-(“
 elsif (state == SOLD)
 puts “Please wait as we’re already giving you a gumball... OM NOM”
 elsif (state == NO_QUARTER)
 state = HAS_QUARTER
 puts “You inserted a quarter!”
 end
end

Thursday, June 2, 2011

It gets WORSE if you need
to add more states:

SOLD_OUT = 0
NO_QUARTER = 1
HAS_QUARTER = 2
SOLD = 3
WINNER = 4 # winner gets all gumballs!

def insertQuarter
 if (state == HAS_QUARTER)
 puts “you can’t insert another quarter”
 elsif (state == SOLD_OUT)
 puts “You can’t insert a quarter; U no can haz gumballs :-(“
 elsif (state == SOLD)
 puts “Please wait as we’re already giving you a gumball... OM NOM”
 elsif (state == NO_QUARTER)
 state = HAS_QUARTER
 puts “You inserted a quarter!”
 elsif (state == WINNER)
 puts “Please wait as we’re giving you all of the gumballs... OM NOM NOM NOM”
 end
endThursday, June 2, 2011

It gets WORSE if you need
to add more states:

SOLD_OUT = 0
NO_QUARTER = 1
HAS_QUARTER = 2
SOLD = 3
WINNER = 4 # winner gets all gumballs!

def insertQuarter
 if (state == HAS_QUARTER)
 puts “you can’t insert another quarter”
 elsif (state == SOLD_OUT)
 puts “You can’t insert a quarter; U no can haz gumballs :-(“
 elsif (state == SOLD)
 puts “Please wait as we’re already giving you a gumball... OM NOM”
 elsif (state == NO_QUARTER)
 state = HAS_QUARTER
 puts “You inserted a quarter!”
 elsif (state == WINNER)
 puts “Please wait as we’re giving you all of the gumballs... OM NOM NOM NOM”
 end
end

Now you have to add a new case to every
other method, too! Do it three more times!

 Mwahahaha!

Thursday, June 2, 2011

Instead, let’s create a bunch of State objects, that each know
how to respond to different situations. For example:

class NoQuarterState
 def initialize(gumballMachine)
 @machine = gumballMachine
 end

 def insertQuarter
 @machine.setState(HasQuarterState.new(@machine))
 end

 def ejectQuarter
 puts “You haven’t inserted a quarter yet” #here the state doesn’t change
 end

 def turnCrank
 puts “You turned, but there’s no quarter” #state stays the same
 end

 def dispense
 puts “You have to pay first!”
 end
end

Thursday, June 2, 2011

Old GumballMachine class
def insertQuarter
 # insert quarter code
end

def ejectQuarter
 # eject quarter code
end

def turnCrank
 # turn crank code
end

def dispense
 # dispense code
end

class GumballMachine

end
Thursday, June 2, 2011

Our lovely GumballMachine class now:

class GumballMachine
 def initialize
 @state = NoQuarterState.new(self)
 end

 def insertQuarter
 @state.insertQuarter
 end

 def ejectQuarter
 @state.ejectQuarter
 end

 def turnCrank
 @state.turnCrank
 end

 def dispense
 @state.dispense
 end
end

Thursday, June 2, 2011

Design Patterns
to the rescue!

this concludes another edition of:

thank you for watching.

Thursday, June 2, 2011

