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Suppose electronic gumball 
machines are the next big thing...
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Great, let’s write some code!

gather all of the states, and create instance variables 
to hold the states:

(Note: this method is not our final solution)

has 
quarter

no 
quarter

gumball 
sold

out of 
gumballs

SOLD_OUT = 0
NO_QUARTER = 1
HAS_QUARTER = 2
SOLD = 3
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Now, what are the actions that can happen 
in this system?

insert quarter eject quarter
turn crankdispense gumball

def insertQuarter
  if (state == HAS_QUARTER)
    puts “you can’t insert another quarter”
  elsif (state == SOLD_OUT)
    puts “You can’t insert a quarter; U no can haz gumballs :-( “
  elsif (state == SOLD)
    puts “Please wait as we’re already giving you a gumball... OM NOM”
  elsif (state == NO_QUARTER)
    state = HAS_QUARTER
    puts “You inserted a quarter!”
  end
end

So these are our methods:
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But that’s only one method!
def insertQuarter
  # insert quarter code
end

def ejectQuarter
  # eject quarter code
end

def turnCrank
  # turn crank code
end

def dispense
  # dispense code
end

class GumballMachine

end
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But that’s only one method!
def insertQuarter
  # insert quarter code
end

def ejectQuarter
  # eject quarter code
end

def turnCrank
  # turn crank code
end

def dispense
  # dispense code
end

OMG so 

many if/else 

cases!!!

class GumballMachine

end
Thursday, June 2, 2011



It gets WORSE if you need 
to add more states:

SOLD_OUT = 0
NO_QUARTER = 1
HAS_QUARTER = 2
SOLD = 3

def insertQuarter
  if (state == HAS_QUARTER)
    puts “you can’t insert another quarter”
  elsif (state == SOLD_OUT)
    puts “You can’t insert a quarter; U no can haz gumballs :-( “
  elsif (state == SOLD)
    puts “Please wait as we’re already giving you a gumball... OM NOM”
  elsif (state == NO_QUARTER)
    state = HAS_QUARTER
    puts “You inserted a quarter!”
  end
end
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It gets WORSE if you need 
to add more states:

SOLD_OUT = 0
NO_QUARTER = 1
HAS_QUARTER = 2
SOLD = 3
WINNER = 4 # winner gets all gumballs!

def insertQuarter
  if (state == HAS_QUARTER)
    puts “you can’t insert another quarter”
  elsif (state == SOLD_OUT)
    puts “You can’t insert a quarter; U no can haz gumballs :-( “
  elsif (state == SOLD)
    puts “Please wait as we’re already giving you a gumball... OM NOM”
  elsif (state == NO_QUARTER)
    state = HAS_QUARTER
    puts “You inserted a quarter!”
  elsif (state == WINNER)
    puts “Please wait as we’re giving you all of the gumballs... OM NOM NOM NOM” 
  end
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It gets WORSE if you need 
to add more states:

SOLD_OUT = 0
NO_QUARTER = 1
HAS_QUARTER = 2
SOLD = 3
WINNER = 4 # winner gets all gumballs!

def insertQuarter
  if (state == HAS_QUARTER)
    puts “you can’t insert another quarter”
  elsif (state == SOLD_OUT)
    puts “You can’t insert a quarter; U no can haz gumballs :-( “
  elsif (state == SOLD)
    puts “Please wait as we’re already giving you a gumball... OM NOM”
  elsif (state == NO_QUARTER)
    state = HAS_QUARTER
    puts “You inserted a quarter!”
  elsif (state == WINNER)
    puts “Please wait as we’re giving you all of the gumballs... OM NOM NOM NOM” 
  end
end

Now you have to add a new case to every 
other method, too! Do it three more times!

 Mwahahaha!
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Instead, let’s create a bunch of State objects, that each know 
how to respond to different situations. For example:

class NoQuarterState
  def initialize(gumballMachine)
    @machine = gumballMachine
  end

  def insertQuarter
    @machine.setState(HasQuarterState.new(@machine))
  end

  def ejectQuarter
    puts “You haven’t inserted a quarter yet” #here the state doesn’t change
  end

  def turnCrank
    puts “You turned, but there’s no quarter” #state stays the same
  end

  def dispense
    puts “You have to pay first!”
  end
end
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Old GumballMachine class
def insertQuarter
  # insert quarter code
end

def ejectQuarter
  # eject quarter code
end

def turnCrank
  # turn crank code
end

def dispense
  # dispense code
end

class GumballMachine

end
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Our lovely GumballMachine class now:

class GumballMachine
  def initialize
    @state = NoQuarterState.new(self)
  end

  def insertQuarter
    @state.insertQuarter
  end

  def ejectQuarter
    @state.ejectQuarter
  end

  def turnCrank
    @state.turnCrank
  end

  def dispense
    @state.dispense
  end
end
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Design Patterns 
to the rescue!

this concludes another edition of:

thank you for watching.
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