CSE 341: Programming Languages

Hal Perkins
Spring 2011
Lecture 5—Pattern-matching, one-argument functions, tail-recursion, accumulators
Review: datatypes and pattern-matching

Evaluation rules for datatype bindings and case expressions:

datatype \(t = C_1 \text{ of } t_1 \mid C_2 \text{ of } t_2 \mid \ldots \mid C_n \text{ of } t_n \)

Adds constructors \(C_i \) where \(C_i \; v \) is a value (and \(C_i \) has type \(t_i \rightarrow t \)).

\[
\text{case } e \text{ of } p_1 \Rightarrow e_1 \mid p_2 \Rightarrow e_2 \mid \ldots \mid p_n \Rightarrow e_n
\]

- Evaluate \(e \) to \(v \)
- If \(p_i \) is the first pattern to match \(v \), then result is evaluation of \(e_i \) in environment extended by the match.
- If \(C \) is a constructor of type \(t_1 \times \ldots \times t_n \rightarrow t \), then
 \(C(x_1, \ldots, x_n) \) is a pattern that matches \(C(v_1, \ldots, v_n) \) and the match extends the environment with \(x_1 \) to \(v_1 \) ... \(x_n \) to \(v_n \).
- Coming soon: more kinds of patterns.
Expression trees

datatype arith_exp = Constant of int |
 Negate of arith_exp |
 Add of arith_exp * arith_exp

Think of values of type arith_exp as trees where nodes are

- Constant with one int child
- Negate with one child that can be any arith_exp tree.
- Add with two children that can be any arith_exp trees.

In general, a type describes a set of values, which are often trees. One-of types give you different variants for nodes.

Constructors evaluate arguments to values (trees) and create bigger values (i.e., taller trees).
Where we’re going

So far, case gives us what we need to use datatypes:

- A (combined) way to test variants and extract values

In fact, pattern-matching is far more general and elegant:

- Can use it for datatypes already in the top-level environment (e.g., lists and options and bools)
- Can use it for each-of types (today)
- Can have deep (nested) patterns (next time)
Why patterns?

Even without more pattern forms, this design has advantages over functions for “testing and destructing” (e.g., \texttt{null}, \texttt{hd}, and \texttt{tl}):

- easier to check for missing and redundant cases
- more concise syntax by combining “test, destruct, and bind”
- you can easily define testing and destructing in terms of pattern-matching

In fact, case expressions are the preferred way to test variants and extract values for all of ML’s “one-of” types, including predefined ones ([] and :: just funny syntax).

So: \textit{Don’t} use functions \texttt{hd}, \texttt{tl}, \texttt{null}, \texttt{isSome}, \texttt{valOf} on homework 2

Teaser: These functions are useful for \textit{passing to other functions}
Tuple/record patterns

You can also use patterns to extract fields from tuples and records:

pattern \(\{ f_1=x_1, \ldots, f_n=x_n \} \) (or \((x_1, \ldots, x_n) \)) matches
\(\{ f_1=v_1, \ldots, f_n=v_n \} \) (or \((v_1, \ldots, v_n) \)).

For record-patterns, field-order does not matter.

This is better style than \#1 and \#foo, and it means you do not (ever) need to write function-argument types.

Instead of a case with one pattern, better style is a pattern directly in a val binding.

- Or a function argument, which is what we have been doing the whole time with (allegedly) multi-argument functions!
Now where are we

Could use a short break from pattern-matching

• Deep (nested) patterns on Friday (along with course motivation)

Rest of today: Tail recursion, accumulators, function-call efficiency

Section tomorrow: Some key features that will come up in minor ways on homework 2:

• type synonyms (e.g., type card = suit * rank)

• ’a and ’’a types and one type being “more general than another” (full lecture on polymorphism later)

• using = for comparing tuples and datatypes

• creating and raising (a.k.a. throwing) exceptions
Recursion

You should now have the hang of recursion:

- It’s no harder than using a loop (whatever that is)
- It’s much easier when you have multiple recursive calls (e.g., with functions over trees)

But there are idioms you should learn for elegance, efficiency, and understandability.

Today: using an accumulator.
Accumulator lessons

- Accumulators can reduce the depth of recursive calls that are not *tail calls*

- Key idioms:
 - Non-accumulator: compute recursive results and combine
 - Accumulator: use recursive result as new accumulator
 - The base case becomes the initial accumulator

You will use recursion in non-functional languages—this lesson still applies.
Tail calls

If the result of \(f(x) \) is the “immediate result” for the enclosing function body, then \(f(x) \) is a tail call.

More precisely, a tail call is a call in tail position:

- In fun \(f(x) = e \), \(e \) is in tail position.
- If if \(e_1 \) then \(e_2 \) else \(e_3 \) is in tail position, then \(e_2 \) and \(e_3 \) are in tail position (not \(e_1 \)). (Similar for case).
- If let \(b_1 \ldots b_n \) in \(e \) end is in tail position, then \(e \) is in tail position (not any binding expressions).
- Function-call arguments are not in tail position.
- ...

Tail calls
So what?

Why does this matter?

- Implementation takes space proportional to depth of function calls ("call stack" must "remember what to do next")
- But in functional languages, implementation must ensure tail calls eliminate the caller’s space
- Accumulators are a systematic way to make some functions tail recursive
- "Self" tail-recursive is very loop-like because space does not grow