
'

&

$

%

CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 18— Racket modules; abstraction with dynamic types;

function equivalences

Hal Perkins CSE341 Spring 2011, Lecture 18 1



'

&

$

%

Modularity

Recall from our ML module lecture some good things about modules:

• Namespace management (help keep names short and separate)

• Make some bindings inaccessible (private functions, data)

• Enforce invariants by using abstract types

– Data is reachable, but outside the module only limited things

can be done with it

• In our example:

– Rationals are always printed in reduced form.

– Clients can’t tell if rationals are kept in reduced form.

Hal Perkins CSE341 Spring 2011, Lecture 18 2



'

&

$

%

Scheme vs. Racket

“Pure” Scheme (R5RS) has no module system or define-struct

• We’ll investigate how much of modules’ advantages we can get via

other means

Racket has a module system (as did DrScheme)

• But in a dynamically typed language, there won’t be signatures

with abstract types

• We can get abstract types using define-struct instead

– Because it makes a new type not equal to any other type

– Quite different than ML approach but both work

More recent versions of standard Scheme (R6RS and draft R7RS) have

their own module system. Our examples use Racket’s, but you’ll want

to check out the standard one if you plan to use modules in Scheme.

Hal Perkins CSE341 Spring 2011, Lecture 18 3



'

&

$

%

Life without modules

• Can hide private things using let

– Workable but awkward

– Making the define-struct “private” is a huge help

Hal Perkins CSE341 Spring 2011, Lecture 18 4



'

&

$

%

The key to define-struct

It is essential to hiding parts of a define-struct that it is a fresh,

different type than any other type.

• In our example, hid the accessors, mutators, and constructor.

• Sometimes exposing some accessors makes sense.

Otherwise, someone could use other features (e.g., cons or set-car!)

to violate invariants.

It is still the case that any Scheme function can be called with any

argument, but we can control invariants on rationals.

Hal Perkins CSE341 Spring 2011, Lecture 18 5



'

&

$

%

Racket modules

• provide for explicit list of what is available outside

– Can be “part” of define-struct

– Kind of like “part” of an ML datatype (kind of)

• require for using another module

– With optional prefixing of names for namespace management

Hal Perkins CSE341 Spring 2011, Lecture 18 6



'

&

$

%

Function equivalences

There are 3 very general things you can do with functions that

produce equivalent code. Recognizing them (and their subtle caveats)

can make you a better programmer.

1. Systematic renaming of variables

2. “Inlining” by replacing a function call with a body + substitutions

3. Unnecessary function wrapping

Before considering each, it will help to define carefully the notion of

free variables...

Hal Perkins CSE341 Spring 2011, Lecture 18 7



'

&

$

%

Free variables

An expression e has a set of free variables. The definition is:

• For each use of a variable, find the binding that defines that

variable. (This uses the language’s scope rules.)

• If there is a use of x that is in e whose corresponding binding is

outside e, then x is in the free variables of e.

Example:

fun f x =

let val w = x + y

val y = fn x => z + y + x

val q = w + x

in if g w then x+4 else f (x-1) end

Hal Perkins CSE341 Spring 2011, Lecture 18 8



'

&

$

%

Systematic Renaming

Is fn x => e1 is equivalent to fn y => e2 where e2 is e1 with every

x replaced by y?

(Generally a good property of languages; callers unaffected by code

maintenance in callee.)

Hal Perkins CSE341 Spring 2011, Lecture 18 9



'

&

$

%

Scope matters

Is fn x => e1 is equivalent to fn y => e2 where e2 is e1 with every

x replaced by y?

What if e1 is y?

What if e1 is fn x => x?

Need caveats:

fn x => e1 is equivalent to fn y => e2 where e2 is e1 with every

free x replaced by y.

But only if y is not already free in e1!

Hal Perkins CSE341 Spring 2011, Lecture 18 10



'

&

$

%

Inlining

Is (fn x => e1) e2 equivalent to e3 where e3 is e1 with every x

replaced by e2?

Example: Replace (fn x => x+x) (2+3) with (2+3) + (2+3)

Useful for simplifying or specializing code

Also a different (non-environment) way to think about what a function

call is.

Hal Perkins CSE341 Spring 2011, Lecture 18 11



'

&

$

%

More scope mattering

Is (fn x => e1) e2 equivalent to e3 where e3 is e1 with every x

replaced by e2?

• Every free x (of course).

– Example: (fn x => (fn x => x)) 17

• A free variable in e2 must not be bound at an occurrence of x.

(Called “capture”.)

– Example: (fn x => (fn y => x)) y

• Evaluating e2 must terminate, not do assignments, not raise

exceptions, not print, etc.

– Because in ML and Scheme (but not all functional languages),

e2 is evaluated before the call

– Example: (fn x => x+x) ((print "hi";5))

• Efficiency? Could be faster or slower. (Why?)

Hal Perkins CSE341 Spring 2011, Lecture 18 12



'

&

$

%

Unnecessary Function Wrapping

A common source of bad style for beginners

Is e1 equivalent to fn x => e1 x? Sure, provided:

• e1 effect-free (terminates, no mutation, printing, exceptions, etc.)

• x does not occur free in e1

Example:

List.map (fn x => SOME x) lst

List.map SOME lst

Notice variables, constructors, etc. are bound to values, so they are

always effect-free (the value is already computed)

Another example:

(lambda () (f))

f

Hal Perkins CSE341 Spring 2011, Lecture 18 13


