This lecture covers three topics that are all directly relevant to homework 5:

- DrScheme’s `define-struct` for defining new (dynamic) types in Scheme — and contrasting that with manually tagged lists
- Writing interpreters to implement programming languages — and its relation to “steps” we are skipping (like parsing)
- Implementing higher-order functions — the role of environments and closures

define-struct and related idioms:

In ML, we studied one-of types (in the form of `datatype` bindings) almost from the beginning, since they were essential for defining many kinds of data. Scheme’s dynamic typing makes the issue less central since we can simply use pairs (or more generally lists) to build anything we want. However, the concept of one-of types is still prevalent. Moreover, DrScheme extends the standard Scheme language with something very similar to ML’s constructors — a special form called `define-struct` — and it is instructive to contrast the two language’s approaches.

Before seeing `define-struct`, let’s consider “Pure Scheme.” There is no type system to restrict what we pass to a function, put in a pair, etc. However, there are different kinds of values — numbers, procedures, pairs, strings, symbols, booleans, the empty-list — and built-in predicates like `number?` and `null?` to determine what kind of value some particular value is. For values that have “parts” (cons cells), there are built-in functions for getting the parts (`car` and `cdr`). So in a real sense, all Scheme values are in “one big datatype” and primitives like + check the “tags” of their arguments (e.g., is it a number using `number?`) and raise an exception for a “run-time type error” before performing some computing (e.g., addition) and making a new “tagged” value (e.g., a new number). These “tags” are like ML constructors, but it’s like our whole language has just one datatype and everything is in it.

Given Pure Scheme, we can still “code up” our own datatypes as an idiom. One common approach is to use lists where the first list element is a symbol to indicate which variant of a one-of type you have. For example, consider this ML datatype:

```plaintext
datatype exp = Const of int | Add of exp * exp | Negate of exp
```

We could decide to represent similar values in Scheme by using lists where the first element is `Const`, `Add`, or `Negate`. If it is `Const` we would have one more list element which is a number. If it is `Add` we would have two more list elements which are expressions. Notice Scheme’s dynamic typing (specifically lists with elements of different types) is essential. So we could build an expression like this:

```
(list 'Negate (list 'Add (list 'Const 2) (list 'Const 2)))
```

And then functions processing expressions could check the `car` of the list to see what sort of expression they have.

However, it is bad style to assume this sort of data representation all over a large program. Instead, we should abstract our decisions into helper functions and then use this interface throughout our program. While the entire notion of an exp datatype is just “in our head” (Scheme has no way for us to specify it except in comments), we still know what we need, namely:

- A way to build each kind of expression (constructors)
- A way to test for the different possibilities (predicates)
A way to extract the different pieces of each kind of expression

To keep things simple, we won’t have the extractors raise errors for the wrong kind of thing, though arguably we should. Defining all the helper functions is easy:

```
(define (Const i) (list 'Const i))
(define (Add e1 e2) (list 'Add e1 e2))
(define (Negate e) (list 'Negate e))
```

```
(define (Const? x) (eq? (car x) 'Const))
(define (Add? x) (eq? (car x) 'Add))
(define (Negate? x) (eq? (car x) 'Negate))
```

```
(define Const-int cadr)
(define Add-e1 cadr)
(define Add-e2 caddr)
(define Negate-e cadr)
```

Now we can write expressions in a much better, more abstract style:

```
(Negate (Add (Const 2) (Const 2)))
```

Here is an interpreter for our little expression language, using the interface we defined:

```
(define (eval-exp e)
  (cond [(Const? e) e]
        [(Add? e) (let ([v1 (Const-int (eval-exp (Add-e1 e)))]
                         [v2 (Const-int (eval-exp (Add-e2 e)))]
                         (Const (+ v1 v2)))]
        [(Negate? e) (Const (- 0 (Const-int (eval-exp (Negate-e e)))))]
        [#t (error "eval-exp expected an exp")])]
```

As we’ll discuss more below, our interpreter takes an expression (in this case for arithmetic) and produces a value (an expression that cannot be evaluated more; in this case a constant).

While this sort of interface is good style in Pure Scheme, it still requires us to remember to use it and “not cheat”. Nothing is to prevent a bad programmer from writing (list 'Add #f), which will lead to a strange error if passed to eval-exp. Conversely, while we think of (Add (Const 2) (Const 2)) as an expression in our little language, it actually gets evaluated to a list and there is nothing to keep some other part of our program from taking the result of evaluating (Add (Const 2) (Const 2)) and using set-car! to mess it up.

define-struct, along with DrScheme’s module system (see lecture 19), fixes these abstraction problems. define-struct is also much more concise than all the helper functions we wrote above. To use it, just write something like:

```
(define-struct card (suit value))
```

This defines a new “struct” called card that is like an ML constructor. It adds to the environment a constructor, a predicate, selectors for the fields, and mutators for the fields. The names of all these bindings are formed systematically from the constructor name card as followed:

- make-card is a function that takes two arguments and returns a value that is a card with suit field holding the first argument and value field holding the second argument.
- card? is a function that takes one argument and returns #t for values created by calling make-card and #f for everything else.
• card-suit is a function that takes a card and returns the contents of the suit field. It raises an error if passed a non-card.

• card-value is similar to card-suit for the value field.

• set-card-suit! and set-card-value! take a card and mutate the appropriate field.

Here is a different definition of an expression language and an interpreter for it that uses define-struct:

```
(define-struct const (int))
(define-struct add (e1 e2))
(define-struct negate (e))

(define (eval-exp2 e)
  (cond [(const? e) e]
         [(add? e) (let ([v1 (const-int (eval-exp2 (add-e1 e)))]
                         [v2 (const-int (eval-exp2 (add-e2 e)))]
                         (make-const (+ v1 v2)))]
         [(negate? e) (make-const (- 0 (const-int (eval-exp2 (negate-e e)))))]
         [#t (error "eval-exp2 expected an exp")])
)
```

An example expression for this language is:

```
(make-negate (make-add (make-const 2) (make-const 2)))
```

The key semantic difference between define-struct and the more manual approach we took first has to do with predicates. When we wrote (list 'Const 4) we made something that causes pair? to return #t. With (make-const 4), none of Pure Scheme’s predicates return #t; only const? does. This makes define-struct quite special – you cannot define something like it as a function or a macro. For abstraction, getting a brand new kind of thing is very powerful. However, it means we can’t write “generic” code that crawls all over any kind of value. In Pure Scheme, eval (from the previous lecture) can actually be written as a Scheme function, which is pretty mind-bending. But that will not work with define-struct involved because eval could not be written in a way that knows about every define-struct that is in a program.

Interpreters, environments, and implementing languages:

While this course is mostly about what programming-language features mean and not how they are implemented, it is important to dispel any notion that things like higher-order functions or objects are “magic”. So we will consider at a very high level how programming languages are implemented in general and features like higher-order functions are implemented in particular.

There are basically two ways to implement a programming language \(A \). We could write an interpreter in another language \(B \) that takes programs in \(A \) and produces answers. Or we could write a compiler in another language \(B \) that takes programs in \(A \) and translates them into equivalent programs in another language \(C \) (not the language \(C \) necessarily) that is already implemented. Conventionally when we think of compilers the target language for the translation is assembly, like you see in CSE 351 (or CSE 378 under the ancien régime). In CSE 401 you learn about compilers; on your next homework you will write an interpreter in Scheme for a small programming language.

Earlier in lecture we did exactly this where our language was expressions built from make-add, make-const, and make-negate (with appropriate arguments) and our interpreter was eval-exp2. It may seem strange that the programs for the arithmetic-expression language look like

```
(make-negate (make-add (make-const 2) (make-const 2)))
```

3
rather than some string representation like "- (2 + 2)", which is admittedly more convenient. However, the version made from constructors is a nice tree data-structure that is very convenient for interpreters (and compilers). It is called an abstract syntax tree, abbreviated AST. The first thing “real” interpreters/compilers do is convert strings or files into ASTs. This is called parsing and it is covered in CSE 401.

Rather than bother with parsing, we can just write ASTs in Scheme “manually”. (As a side-note, Scheme’s quoting from last lecture is also a great way to write programs that is more structured than strings but less verbose than calling constructors.) We can also easily write Scheme functions that return “programs” in the language we are defining. Returning an AST is easier than returning a string representation.

The biggest thing missing from our arithmetic-expression language is variables. That is why we could just have one recursive function that took an expression and returned a value. As we have known since lecture 1, since expressions can have variables, evaluating them requires an environment that maps variables to values. So an interpreter for a language with expressions needs a recursive helper function that takes an expression and an environment and produces a value. In fact, interpreters may need even more parameters and/or results for features like mutation or exceptions.

There are many ways to represent an environment in an interpreter; all we need is something that given a variable can produce a value (or an error if the variable is not bound). An association list works just fine, though CSE 332 (or CSE 326) teaches many more efficient data structures.

Implementing higher-order functions:

A helper function that takes an expression and an environment and returns a value is really all we need to implement higher-order functions. However, there is one key “trick” (which isn’t really tricky). Recall that when we call a function we use the environment when the function was defined extended to map the formal argument(s) in the function definition to the actual argument(s) at the call-site. Therefore, we need the environment where the function was defined, but that is not the argument passed to our helper function, the environment at the call-site is. The “trick” is to have function definitions evaluate to closures. A closure is just a pair of a function and an environment. So as we said earlier in the course informally, a function evaluates to a closure, which has in it code and the environment at the point the function was evaluated to the closure.

In other words, a function is not a value, a closure is. Now at a function application, we evaluate the function part to a value (a closure, else we have an error like trying to treat a number as a function) and the argument to another value. Next we evaluate the body of the code part of the closure using the environment part of the closure extended with the argument of the code part mapping to the argument at the call-site. That really, truly is all there is to it.

It may seem expensive that we store the “whole current environment” in every closure. First, it is not that expensive when environments are association lists since different environments are just extensions of each other and we do not copy lists when we make longer lists with cons. (Recall this sharing is a big benefit of not mutating lists, and we do not mutate environments.) Second, in practice we can save space by only storing those parts of the environment that the function body might possibly use. We can look at the function body and see what free variables it has (variables used in the function body whose definition are outside the function body) and the environment we store in the closure needs only these variables.

Finally, you might wonder how compilers implement closures when the target language does not have higher-order functions.1 As part of the translation, function definitions still evaluate to closures that have two parts, code and environment. However, we do not have an interpreter with a “current environment” whenever we get to a variable we need to look up. So instead, we change all the functions in the program to take an extra argument (the environment) and change all function calls to explicitly pass in this extra argument. Now when we have a closure, the code part will have an extra argument and the caller will pass in the environment part for this argument. The compiler then just needs to translate all uses of free variables to code that uses the extra argument to find the right value. In practice, using good data structures for

1You don’t need to know this for the final.
environments (like arrays) can make these variable lookups very fast (as fast as reading a value from an array).