
CSE341, Fall 2011, Lecture 9 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

The previous lecture defined function closures and lexical scope. It also showed how closures make higher-
order functions like map, filter, and fold much more useful because their function arguments can have “private
data” (not unlike how objects in Java have private fields). This lecture covers four other general patterns
where function closures are amazingly useful:

• Combining functions into larger functions (e.g., function composition)

• Currying: Multi-argument functions and partial application (and an unfortunate digression to the
value restriction)

• Callbacks, as used in reactive programming

• Implementing an absract data type (ADT) as a record of functions (requires some rather fancy tech-
niques, but hopefully the result is understandable)

Except for some syntatic sugar, there are no new semantics related to closures, just new idioms. For the
callback idiom, we do finally admit that ML has support for mutable data, which requires introducing ML’s
refs and the primitives for building, accessing, and mutating them.

Combining Functions

Function composition

When we program with lots of functions, it is useful to create new functions that are just combinations of
other functions. You have probably done similar things in mathematics, such as when you compose two
functions. For example, here is a function that does exactly function composition:

fun compose (f,g) = fn x => f (g x)

It takes two functions f and g and returns a function that applies its argument to g and makes that the
argument to f. Crucially, the code fn x => f (g x) uses the f and g in the environment where it was
defined. Notice the type of compose is inferred to be (’a -> ’b) * (’c -> ’a) -> ’c -> ’b, which is
equivalent to what you might write: (’b -> ’c) * (’a -> ’b) -> (’a -> ’c) since the two types simply
use different type-variable names consistently.

As a cute and convenient library function, the ML library defines the infix operator o as function composition,
just like in math. So instead of writing:

fun sqrt_of_abs i = Math.sqrt(Real.fromInt (abs i))

you could write:

fun sqrt_of_abs i = (Math.sqrt o Real.fromInt o abs) i

But this second version makes clearer that we can just use function-composition to create a function that
we bind to a variable with a val-binding, as in this third version:

1

val sqrt_of_abs = Math.sqrt o Real.fromInt o abs

While all three versions are fairly readable, the first one does not immediately indicate to the reader that
sqrt_of_abs is just the composition of other functions.

The Pipeline Operator

In functional programming, it is very common to compose other functions to create larger ones, so it makes
sense to define convenient syntax for it. While the third version above is concise, it, like function composition
in mathematics, has the strange-to-many-programmers property that the computation proceeds from right-
to-left: “Take the absolute value, convert it to a real, and compute the square root” may be easier to
understand than, “Take the square root of the converstion to real of the absolute value.”

We can define convenient syntax for left-to-right as well. Let’s first define our own infix operator that lets
us put the function to the right of the argument we are calling it with:

infix |> (* tells the parser |> is a function that appears between its two arguments *)
fun x |> f = f x

Now we can write:

fun sqrt_of_abs i = i |> abs |> Real.fromInt |> Math.sqrt

This operator, commonly called the pipeline operator, is very popular in F# programming. As we have seen,
there is nothing complicated about its semantics.

Other functions

There are many ways we might combine functions beyond just composition, so it is good to have a language
that lets us define our own ways to define new higher-order functions. Here are two similar examples where
we treat g as a “back-up” option if f returns NONE (in the first example) or raises an exception (in the second
example).

(* val backup1 = fn : (’a -> ’b option) * (’a -> ’b) -> ’a -> ’b *)
fun backup1(f,g) = fn x => case f x of NONE => g x | SOME y => y

(* val backup2 = fn : (’a -> ’b) * (’a -> ’b) -> ’a -> ’b *)
fun backup2 (f,g) = fn x => g x handle _ => h x

Currying: Multi-argument functions and partial application

The next idiom we consider is very convenient in general, and is often used when defining and using higher-
order functions like map, filter, and fold. We have already seen that in ML every function takes exactly
one argument, so you have to use an idiom to get the effect of multiple arguments. Our previous approach
passed a tuple as the one argument, so each part of the tuple is conceptually one of the multiple arguments.
Another more clever and often more convenient way is to have a function take the first conceptual argument
and return another function that takes the second conceptual argument and so on. Lexical scope is essential
to this technique working correctly.

This technique is called currying after a logician named Haskell Curry who studied related ideas (so if you
don’t know that, then the term currying does not make much sense).

Defining and Using a Curried Function

Here is an example of a “three argument” function that uses currying:

2

val sorted3 = fn x => fn y => fn z => z >= y andalso y >= x

If we call sorted3 4 we will get a closure that has x in its environment. If we then call this closure with
5, we will get a closure that has x and y in its environment. If we then call this closure with 6, we will get
true because 6 is greater than 5 and 5 is greater than 4. That is just how closures work.

So ((sorted3 4) 5) 6 computes exactly what we want and feels pretty close to calling sorted3 with 3 argu-
ments. Even better, the parentheses are optional, so we can write exactly the same thing as sorted3 4 5 6,
which is actually fewer characters than our old tuple approach where we would have:

fun sorted3_tupled (x,y,z) = z >= y andalso y >= x
val someClient = sorted3_tupled(4,5,6)

In general, the syntax e1 e2 e3 e4 is implicitly the nested function calls (((e1 e2) e3) e4) and this
choice was made because it makes using a curried function so pleasant.

Partial Application

Even though we might expect most clients of our curried sorted3 to provide all 3 conceptual arguments, they
might provide fewer and use the resulting closure later. This is called “partial application” because we are
providing a subset (more precisely, a prefix) of the conceptual arguments. As a silly example, sorted3 0 0
returns a function that returns true if its argument is nonnegative.

Partial Application and Higher-Order Functions

Currying is particularly convenient for creating similar functions with iterators. For example, here is a
curried version of a fold function for lists:

fun fold f = fn acc => fn l =>
case l of
[] => acc

| hd::tl => fold f (f(acc,hd)) tl

Now we could use this fold to define a function that sum’s a list elements like this:

fun sum1 l = fold ((fn (x,y) => x+y) 0 l

But that is unnecessarily complicated compared to just using partial application:

val sum2 = fold (fn (x,y) => x+y) 0

The convenience of partial application is why many iterators in ML’s standard library use currying with the
function they take as the first argument. For example, the types of all these functions use currying:

val List.map = fn : (’a -> ’b) -> ’a list -> ’b list
val List.filter = (’a -> bool) -> ’a list -> ’a list
val List.foldl = fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

As an example, List.foldl((fun (x,y) => x+y), 0, [3,4,5]) does not type-check because List.foldl
expects a ’a * ’b -> ’b function, not a triple. The correct call is List.foldl (fn (x,y) => x+y) 0 [3,4,5],
which calls List.foldl with a function, which returns a closure and so on.

There is syntactic sugar for defining curried functions; you can just separate the conceptual arguments by
spaces rather than using anonymous functions. So the better style for our fold function would be:

3

fun fold f acc l =
case l of
[] => acc

| hd::tl => fold f (f(acc,hd)) tl

Another useful curried function is List.exists, which we use in the callback example below. These library
functions are easy to implement ourselves, so we should understand they are not fancy:

fun exists predicate lst =
case lst of
[] => false

| hd::tl => predicate hd orelse exists predicate tl

Currying in General

While currying and partial application are great for higher-order funtions, they are great in general too.
They work for any multi-argument function and partial application can also be surprisingly convenient. In
this example, both zip and range are defined with currying and countup partially applies range. The
add_numbers function turns the list [v1,v2,...,vn] into [(1,v1),(2,v2),...,(n,vn)].

fun zip xs ys =
case (xs,ys) of

([],[]) => []
| (x::xs’,y::ys’) => (x,y) :: (zip xs’ ys’)
| _ => raise Empty

fun range i j = if i > j then [] else i :: range (i+1) j

val countup = range 1

fun add_numbers xs = zip (countup (length xs)) xs

Combining Functions to Curry and Uncurry Other Functions

Sometimes functions are curried but the arguments are not in the order you want for a partial application.
Or sometimes a function is curried when you want it to use tuples or vice-versa. Fortunately our earlier
idiom of combining functions can take functions using one approach and produce functions using another:

fun other_curry1 f = fn x => fn y => f y x
fun other_curry2 f x y = f y x
fun curry f x y = f (x,y)
fun uncurry f (x,y) = f x y

Looking at the types of these functions can help you understand what they do. As an aside, the types are
also fascinating because if you pronounce -> as “implies” and * as “and”, the types of all these functions
are logical tautologies.

Efficiency

Finally, you might wonder which is faster, currying or tupling. It almost never matters; they both do work
proportional to the number of conceptual arguments, which is typically quite small. For the performance-
critical functions in your software, it might matter to pick the faster way. In the version of the ML compiler we

4

are using, tupling happens to be faster. In widely used implementations of OCaml, Haskell, and F#, curried
functions are faster so they are the standard way to define multi-argument functions in those languages.

The Value Restriction: See Next Lecture

Once you have learned currying and partial application, you might try to use it to create a polymorphic
function. Unfortunately, uses like this do not work in ML:

val mapSome = List.map SOME (*turn [v1,v2,...,vn] into [SOME v1, SOME v2, ..., SOME vn]*)
val pairIt = List.map (fn x => (x,x)) (*turn [v1,v2,...,vn] into [(v1,v1),(v2,v2),...,(vn,vn)]*)

Given what we have learned so far, there is no reason why this should not work, especially since all these
functions do work:

fun mapSome xs = List.map SOME xs
val mapSome = fn xs => List.map SOME xs
val pairIt : int list -> (int * int) list = List.map (fn x => (x,x))
val incrementIt = List.map (fn x => x+1)

The reason is called the value restriction and it is sometimes annoying. It is in the language for good reason:
without it, the type-checker might allow some code to break the type system. This can happen only with
code that is using mutation and the code above is not, but the type-checker does not know that.

The simplest approach is to ignore this issue until you get a warning/error about the value restriction. When
you do, turn the val-binding back into a fun-binding like in the first example above of what works.

The next lecture, on type inference, will discuss the value restriction in some more detail.

Callbacks (and a Digression to Introduce ML Refs

The next common idiom we consider is implementing a library that detects when “events” occur and informs
clients that have previously “registered” their interest in hearing about events. Clients can register their
interest by providing a “callback” — a function that gets called when the event occurs. Examples of events
for which you might want this sort of library include things like users moving the mouse or pressing a key.
Data arriving from a network interface is another example. Computer players in a game where the events
are “it is your turn” is yet another.

The purpose of these libraries is to allow multiple clients to register callbacks. The library implementer has
no idea what clients need to compute when an event occurs, and the clients may need “extra data” to do the
computation. So the library implementor should not restrict what “extra data” each client uses. A closure is
ideal for this because a function’s type t1 -> t2 does not specify the types of any other variables a closure
uses, so we can put the “extra data” in the closure’s environment.

If you have used “event listeners” in Java’s Swing library, then you have used this idiom in an object-oriented
setting. In Java, you get “extra data” by defining a subclass with additional fields. This can take an awful
lot of keystrokes for a simple listener, which is a (the?) main reason the Java language added anonymous
inner classes (which you do not need to know about for this course, but we will show an example later),
which are closer to the convenience of closures.

To see an example in ML, we will finally introduce ML’s support for mutation. Mutation is okay in some
settings. In this case, we really do want registering a callback to “change the state of the world” — when
an event occurs, there are now more callbacks to invoke. In ML, most things really cannot be mutated.
Instead you must create a reference, which is a container whose contents can be changed. You create a new
reference with the expression ref e (the initial contents are the result of evaluating e). You get a reference
r’s current contents with !r (not to be confused with negation in Java or C), and you change r’s contents
with r := e. The type of a reference that contains values of type t is written t ref.

5

Our example uses the idea that callbacks should be called when a key on the keyboard is pressed. We will
pass the callbacks an int that encodes which key it was. Our interface just needs a way to register callbacks.
(In a real library, you might also want a way to unregister them.)

val onKeyEvent : (int -> unit) -> unit

Clients will pass a function of type int -> unit that, when called later with an int, will do whatever they
want. To implement this function, we just use a reference that holds a list of the callbacks. Then when an
event actually occurs, we assume the function on_event is called and it calls each callback in the list:

val cbs : (int -> unit) list ref = ref []
fun onKeyEvent f = cbs := f::(!cbs) (* The only "public" binding *)
fun onEvent i =

let fun loop fs =
case fs of
[] => ()

| f::fs’ => (f i; loop fs’)
in loop (!cbs) end

Most importantly, the type of onKeyEvent places no restriction on what extra data a callback can access
when it is called. Here are different clients (calls to onKeyEvent) that use different bindings of different types
in their environment. (The val _ = e idiom is common for executing an expression just for its side-effect,
in this case registering a callback.)

val timesPressed = ref 0
val _ = onKeyEvent (fn _ => timesPressed := (!timesPressed) + 1)

fun printIfPressed i =
onKeyEvent (fn j => if i=j

then print ("you pressed " ^ Int.toString i ^ "\n")
else ())

val _ = printIfPressed 4
val _ = printIfPressed 11
val _ = printIfPressed 23

Implementing an ADT

This last example is the fanciest and most subtle. It is not the sort of thing programmers typically do —
there is usually a simpler way to do it in a modern programming lnaguage. It is included as an advanced
example to demonstrate that a record of closures that have the same environment is a lot like an object
where the functions are methods and the bindings in the environment are private fields and methods. There
are no new language features here, just lexical scope. It suggests (correctly) that functional programming
and object-oriented programming are more similar than they might first appear (a topic we will revisit later
in the course; there are important differences).

The key to an abstract data type (ADT) is requiring clients to use it via a collection of functions rather
than directly accessing its private implementation. Thanks to this abstraction, we can later change how the
data type is implemented without changing how it behaves for clients. In an object-oriented language, you
might implement an ADT by defining a class with all private fields (inaccessible to clients) and some public
methods (the interface with clients). We can do the same thing in ML with a record of closures; the variables
that the closures use from the environment correspond to the private fields.

6

As an example, consider an implementation of a set of integers that supports creating a new bigger set and
seeing if an integer is in a set. Our sets are mutation-free in the sense that adding an integer to a set produces
a new, different set; we could just as easily define a mutable version using the references introduced above.
In ML, we could define a type that describes this interface:

datatype set = S of { insert : int -> set, member : int -> bool, size : unit -> int }

Roughly speaking, a set is a record with two fields, each of which holds a function. It would be simpler to
write:

type set = { insert : int -> set, member : int -> bool, size : unit -> int }

but this does not work in ML because type bindings cannot be recursive. So we have to deal with the mild
inconvenience of having a constructor S around our record of functions defining a set even though sets are
each-of types, not one-of types. Notice we are not using any new types or features; we simply have a type
describing a record with fields named insert and member, each of which holds a function.

Once we have an empty set, we can use its insert field to create a one-element set, and then use that set’s
insert field to create a two-element set, and so on. So the only other thing our interface needs is a binding
like this:

val empty_set = ... : set

Before implementing this interface, let’s see how a client might use it (many of the parentheses are optional
but may help understand the code):

fun use_sets () =
let val S s1 = empty_set

val S s2 = (#insert s1) 34
val S s3 = (#insert s2) 34
val S s4 = #insert s3 19

in
if (#member s4) 42
then 99
else if (#member s4) 19
then 17 + (#size s3) ()
else 0

end

Again we are using no new features. #insert s1 is reading a record field, which in this case produces a
function that we can then call with 34. If we were in Java, we might write s1.insert(34) to do something
similar. The val bindings use pattern-matching to “strip off” the S constructors on values of type set.

There are many ways we could define empty_set; they will all use the technique of using a closure to
“remember” what elements a set has. Here is one way:

val empty_set =
let

fun make_set lst = (* lst is a "private field" in result *)
let (* contains a "private method" in result *)

fun contains i = List.exists (fn j => i=j) lst

7

in
S { insert = fn i => if contains i

then make_set lst
else make_set (i::lst),

member = contains,
size = fn () => length lst

}
end

in
make_set []

end

All the fanciness is in make_set and empty_set is just the record returned by make_set []. What make_set
returns is a value of type set. It is essentially a record with three closures. The closures can use lst, the
helper function contains, and make_set. Like all function bodies, they are not executed until they are
called.

8

