
CSE341, Fall 2011, Lecture 7.5 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

We now fulfill our promise to motivate the topics covered in this course now that we have enough shared
experience to have a productive conversation.

We can break the question of, “what is this course good for” into four parts:

1. Why should we learn programming languages other than popular industry ones like Java, C, C++,
Perl, etc.?

2. Why should we learn fundamental concepts that appear in most programming languages, rather than
just learning particular languages?

3. Why should we focus on languages that encourage (mostly) functional programming (i.e., that discour-
age mutation, encourage recursion, and encourage functions that take and return other functions)?

4. Why are we using SML, Racket, and Ruby as complements to your Java experience (remembering that
the course is more about the concepts than the languages)?

The answers are numerous. Some may resonate with you more than others. The following discussion is
necessarily incomplete.

Why Different Languages

One good analogy is with automobiles. There will never be a best programming language much as there will
never be a best car. Different cars serve different purposes: some go fast, some can go off-road, some are
safer, some have room for a large family, etc. Yet there are remarkable similarities and while drivers or auto
mechanics may have preferences and specialties, they learn enough fundamental principles to work with new
kinds of cars easily. Still, it can be uncomfortable to switch cars, as anyone who has ever had trouble finding
the windshield wipers in a friend’s car can attest.

When learning automotive principles, it is probably helpful to start with simple and elegant cars where each
piece has a clear and simple purpose rather than an “industrial-strength” car with features that have been
added over many years.

Are All Languages The Same?

You should also know that in a very precise sense all programming languages are equally powerful: If you
need to write a program that takes some input X and produces output Y , there is some way to do it
Java or ML or Perl or a ridiculous language where you have only 3 variables and 1 while loop. The equal
expressiveness is basically the Church-Turing Thesis, a core topic in courses on the theory of computation
such as CSE431. But just because there is always some way to implement your program, does not mean it
is easy, clear, or robust. A related concept is the, “Turing tarpit” where a language’s powerful features are
lauded for what they can do, but it remains difficult to use them (like moving in a tarpit). Arguing over
“which language is better” in terms of which has more useful features is also often unilluminating since there
is always some way to get the job done in your favorite language.

The similarities among languages we focus on in this course have more to do with fundamental language
concepts, such as variables, abstraction, support for one-of types, recursive definitions, etc. We won’t repeat
those here because that would require repeating most of the course!

So are all languages really the same and picking one just a matter of personal preference? No, that would
take things too far. A good analogy might be different human cultures: On many levels, “people are people”

1



and there are universal experiences in the human condition. Yet there are also fascinating differences among
cultures and communities: their customs, their language, their values, and so on. In fact, one of the best
ways to learn more about your own culture (maybe Java or C) is to immerse yourself in other cultures
(maybe ML). In fact, you may bring experiences “back home” that make you a better and happier person.

In terms of programming languages, in addition to syntactic differences, often the most important differences
is that what is “primitive” and really easy in one language is awkward in another. For example, returning
a pair in Java is annoying. Conversely, setting up the equivalent of subclasses in ML is not very pleasant.

Reality and Why We Ignore Most of It

It is also fair to point out that when choosing a language for a software project, whether the language is an
elegant design that is easy to learn and useful for writing correct, concise code is only one consideration. In
the real world, it also matters what libraries are available, what your boss wants, and whether you can hire
enough developers to do the task. We have the luxury in the classroom of ignoring these issues to focus on
the fundamental truths underlying programming languages. Doing so is important, so it is fine to ignore
other important real-world issues.

Why is precisely defining the semantics and idioms of a programming language so important? Because there
is no other way to reason about what your software is doing: If you do not know the language definition
you are stuck with vague notions about “what this code might mean.” This is a horrible recipe for software
development. Only with semantics can we resolve issues like whether a library user or a library implementor
is at fault for a bug.

More generally, much of software development is about designing interfaces and explaining as precisely as
possible how they should be used. A programming language is one such interface: It takes a program and
returns an answer. So it is a really good example of an interface needing a precise definition.

While it is unlikely you will be involved in designing a new general-purpose programming language like
Java, ML, or C++, it is surprisingly likely that you will end up designing a smaller new language for some
specific project. This happens all the time — whenever some application wants a way for users to extend
its functionality. Editors (like emacs), game engines (like Quake), CAD tools (like AutoCAD), desktop
software (like Microsoft Office), and web browsers are all examples (corresponding languages include elisp,
JavaScript, QuakeC, etc.). Seeing a range of programming languages and understanding their essential
design is invaluable.

Finally, there is a place at universities to learn beautiful works of art that teach us about the universe
and enrich us as people. Elegant programming languages are such works of art, just like the play Hamlet.
Educated citizens should know SML and Hamlet – even though they both have strange syntax, are not the
most modern and popular languages / plays (or movies), and may not help you get a summer internship.

Why Functional Languages

Having covered just a few reasons to study programming languages in general, we can focus on why to
focus on a functional languages like ML. The main reason is that it has many features that encourage a
programming style that is invaluable for writing correct, elegant, and efficient software. It develops a way
of thinking about computation that will make you a better programmer even in other languages. Specific
examples are what the course notes are all about, so rather then repeat topics like function closures and
deep pattern-matching here, instead let’s purposely “brag” about the important role functional languages
have played in the past and are likely to play in the future.

One sometimes hears functional languages dismissed as “slow, worthless, beautiful things you have to learn
in school.” However, they tend to teach exactly the language constructs and concepts that are useful but
“ahead of their time.” Students in programming-languages courses learned about garbage collection (not
having to manage memory manually), generics (like Java’s List<T> type), universal data representations
(like XML), function closures (as in Python, Ruby, and JavaScript), type inference (C#), etc. many years

2



before they were in widely popular languages. One way to think about it is that functional programming
has not “conquered” the programming world, but many of its features have been “assimilated” and are now
widely promoted without functional languages getting much credit. Here are some examples:

• The difference between C# 2.0 and C# 3.0 is largely support for functional-programming features and
other ML-like conveniences (e.g., type inference)

• Java currently has a preliminary proposal for closures in a future version.

• Now that desktop computers are getting parallel processors, more software and languages will encourage
not mutating data, since this makes it much more difficult to do things in parallel.

So it is reasonable to think other ideas like pattern-matching, currying, or hygienic macros might also
eventually achieve assimilation.

We should also mention MapReduce, the Google system for large-scale fault-tolerant data processing on
computer clusters, and the open-source variant Hadoop. These systems are now used throughout big (and
small) business and increasingly much of science to analyze massive data sets. To quote the introduction
of the original 2004 paper describing MapReduce (http://labs.google.com/papers/mapreduce.html), “we
designed a new abstraction that allows us to express the simple computations we were trying to perform but
hides the messy details of parallelization, fault-tolerance, data distribution and load balancing in a library.
Our abstraction is inspired by the map and reduce primitives present in Lisp and many other functional
languages.” This is probably the most successful use of the core concept of using higher-order functions to
separate the traversal of data from how to process data elements.

Are Functional Languages Used for Anything?

Functional languages are useful for much more than teaching students and influencing more popular lan-
guages. While the amount of software written in functional languages, remains a small percentage of all the
software out there, it is certainly more than zero! Moreover, functional programming has seen a real surge
in interest and adoption in the last few years. Here we just sketch some high-points.

Admittedly, SML as a particular language, has not seen much “real world” use in the last few years (it is
older), and Racket certainly has many interesting projects doing real things like web servers, but it remains
in a “niche” community with a large focus on education. Ruby (which is more OO than functional, though
the lines are always fuzzy) is a very popular language in large part because of frameworks for writing web
applications (and this course will not go anywhere near such features). But there are many other functional
languages, OO+functional languages, and projects using functional ideas where there is a lot of current
investment: real companies building real products. Here we organize brief highlights by language, listed
alphabetically and omitting many wonderful languages and projects:1

• Erlang, http://www.erlang.org: Erlang is a functional language originally developed for telecommuni-
cations infrastructure. It is well-suited for distributed programs, programs running on many computers
that may be physically separate and may fail. It has enjoyed popularity for various programs running
on the web, notably the chat program in Facebook.

• F#, http://tryfsharp.org: F# is a dialect of ML (i.e., it is a lot like ML with different syntax, extra
features, and a few restrictions) that runs on Microsoft’s .Net platform and is part of Visual Studio
2010. It is fully interoperable with other .Net languages like C# and Visual Basic, so an application
can be written in multiple languages, calling libraries written in others. A typical choice is to program
the core algorithms of an application in F# while leaving the graphical interface in C#. For what it
is worth, here is one “case study” published by Microsoft:
http://www.microsoft.com/casestudies/Case Study Detail.aspx?casestudyid=4000006794

1It should also be clear that the goal is to provide interesting links without implying any endorsement of any product or
company.

3



• Haskell, http://www.haskell.org: Haskell is a cutting-edge functional language enjoying increased pop-
ularity (I heard recently that new versions of the Glasgow Haskell compiler get downloaded about
200,000 times). It has higher-order functions and pattern-matching like ML, but it is also substantially
different: It is pure (the only mutation is in an outer layer kept separate using things called monads), it
is lazy (we will discuss lazy evaluation a bit in the context of Racket), and it has type classes (which help
make code more reusable). As for industrial use, see http://haskell.org/haskellwiki/Haskell in industry,
which lists almost 50 companies, big and small, that have reported on their use of Haskell.

• OCaml, http://caml.inria.fr: OCaml is a dialect of ML almost as old as SML and much older than F#.
Like SML, it has been used for many, many research projects and compilers as well as useful open-source
and commercial programs. Probably the largest but by no means only commercial user is a New York
finance company, as described in this recent article: http://queue.acm.org/detail.cfm?id=2038036

• Scala, http://www.scala-lang.org: Scala is a general-purpose language that is enjoying a lot of increased
popularity. It is fully interoperable with Java and claims increased productivity, largely by adding to
Java functional programming as well as using functional programming to make concurrent programming
easier. Particularly well-known users are Twitter, LinkedIn, and FourSquare.

Another good general place to read about cutting-edge commercial use of functional programming is the
web-site for the annual conference on, well, Commercial Users of Functional Programming, http://cufp.org.
See in particular abstracts and videos from previous years’ events.

While the information above focused on industrial use outside of the programming-languages community,
functional languages remain exceedingly well-suited to writing tools related to languages themselves, such
as compilers, interpreters, theorem provers, code-analysis tools, etc.

Static vs. Dynamic and Object-Oriented vs. Functional

To focus a bit more on the actual organization and topics in this course, we can ask why we are learning
SML, Racket, and Ruby. They all have higher-order functions. Plus, each has several features that help us
learn essential language concepts:

• ML has parametric polymorphism, which is complementary to OO-style subtyping, a rich module
system for abstract types, and rich pattern-matching. OCaml and F# would work just about as well.

• Scheme has dynamic typing, hygienic macros, fascinating control operators (though we may skip this),
and a minimalist design.

• Ruby has classes but not types, a more complete commitment to OO than Java, and mixins.

Were the course longer we would also investigate Haskell (a pure, lazy functional language with type classes
and monads) and perhaps Prolog (a logic language with unification and backtracking).

We will also compare and contrast functional and object-oriented programming styles (two major high-level
language paradigms), as well as dynamic versus static typing. These are orthogonal issues and after this
course you will have seen one language with each combination:

dynamically typed statically typed
functional Scheme SML

object-oriented Ruby Java

The benefits and limitations of static typing are a “big idea” in the course, but we have not gotten there yet.

4


