
CSE341, Fall 2011, Lecture 6 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

This lecture covers two unrelated topics:

• The notion of tail recursion, its relation to efficiency of recursion in functional languages like ML, and
how to use accumulators as a general technique to make functions tail recursive — note this topic
involves new idioms but no new language constructs

• Exceptions

Tail Recursion and Accumulators

To understand tail recursion and accumulators, consider these functions for summing the elements of a list:

fun sum1 xs =
case xs of

[] => 0
| i::tl => i + sum1 tl

fun sum2 xs =
let fun f (xs,acc) =

case xs of
[] => acc

| i::tl => f(tl,i+acc)
in

f(xs,0)
end

Both functions compute the same results, but sum2 is more complicated, using a local helper function that
takes an extra argument, called acc for “accumulator.” In the base case of f we return acc and the value
passed for the outermost call is 0, the same value used in the base case of sum1. This pattern is common: The
base case in the non-accumulator style becomes the initial accumulator and the base case in the accumulator
style just returns the accumulator.

Why might sum2 be preferred when it is clearly more complicated? To answer, we need to understand a
little bit about how function calls are implemented. Conceptually, there is a call stack, which is a stack (the
data structure with push and pop operations) with one element for each function call that has been started
but has not yet completed. Each element stores things like the value of local variables and what part of the
function has not been evaluated yet. When the evaluation of one function body calls another function, a
new element is pushed on the call stack and it is popped off when the called function completes.

So for sum1, there will be one call-stack element (sometimes just called a “stack frame”) for each recursive
call to sum1, i.e., the stack will be as big as the list. This is necessary because after each stack frame is
popped off the caller has to, “do the rest of the body” — namely add i to the recursive result and return.

Given the description so far, sum2 is no better: sum2 makes a call to f which then makes one recursive call
for each list element. However, when f makes a recursive call to f, there is nothing more for the caller to do
after the callee returns except return the callee’s result. This situation is called a tail call (let’s not try to
figure out why it’s called this) and functional languages like ML typically include an essential optimization:

1



When a call is a tail call, the caller’s stack-frame is popped before the call — the callee’s stack-frame just
replaces the caller’s. This makes sense: the caller was just going to return the callee’s result anyway. For
sum2 that means the call stack needs just 2 elements at any point (one for sum2 and one for the current call
to f).

Why do implementations of functional languages include this optimization? By doing so, recursion can
sometimes be as efficient as a while-loop, which also does not make the call-stack bigger. The “sometimes”
is exactly when calls are tail calls, something you the programmer can reason about since you can look at
the code and identify which calls are tail calls.

Tail calls do not need to be to the same function (f can call g), so they are more flexible than while-loops that
always have to “call” the same loop. Using an accumulator is a common way to turn a recursive function
into a “tail-recursive function” (one where all recursive calls are tail calls), but not always. For example,
functions that process trees (instead of lists) typically have call stacks that grow as big as the depth of a
tree, but that’s true in any language: while-loops are not very useful for processing trees.

More Examples

Tail recursion is common for functions that process lists, but the concept is more general. For example, here
are two implementations of the factorial function where the second one uses a tail-recursive helper function
so that it needs only a small constant amount of call-stack space:

fun fact1 n = if n=0 then 1 else n * fact1(n-1)

fun fact2 n =
let fun aux(n,acc) = if n=0 then acc else aux(n-1,acc*n)
in

aux(n,1)
end

It is worth noticing that fact1 4 and fact2 4 produce the same answer even though the former performs
4∗ (3∗ (2∗ (1∗1))) and the latter performs (((1∗4)∗3)∗2)∗1. We are relying on the fact that multiplication
is associative (a∗(b∗c) = (a∗b)∗c) and that multiplying by 1 is the identity function (1∗x = x∗1 = x). The
earlier sum example made analogous assumptions about addition. In general, converting a non-tail-recursive
function to a tail-recursive function usually needs associativity, but many functions are associative.

A more interesting example is this inefficient function for reversing a list:

fun rev1 lst =
case lst of

[] => []
| x::xs => (rev1 xs) @ [x]

We can recognize immediately that it is not tail-recursive since after the recursive call it remains to append
the result onto the one-element list that holds the head of the list. Although this is the most natural way
to reverse a list recursively, the inefficiency is caused by more than creating a call-stack of depth equal to
the argument’s length, which we will call n. The worse problem is that the total amount of work performed
is proportional to n2, i.e., this is a quadratic algorithm. The reason is that appending two lists takes time
proportional to the length of the first list: it has to traverse the first list — see our own implementation of
append in an earlier lecture. Over all the recursive calls to rev1, we call @ with first arguments of length
n− 1, n− 2, ..., 1 and the sum of the integers from 1 to n− 1 is n ∗ (n− 1)/2.

As you learn in a data structures and algorithms course (CSE332), quadratic algorithms like this are much
slower than linear algorithms for large enough n. That said, if you expect n to always be small, it may be

2



be worth valuing the programmer’s time and sticking with a simple recursive algorithm. Else, fortunately,
using the accumulator idiom leads to an almost-as-simple linear algorithm.

fun rev2 lst =
let fun aux(lst,acc) =

case lst of
[] => acc

| x::xs => aux(xs, x::acc)
in

aux(lst,[])
end

The key differences are (1) tail recursion and (2) we do only a constant amount of work for each recursive
call because :: does not have to traverse either of its arguments.

A Precise Definition of Tail Position

While most people rely on intuition for, “which calls are tail calls,” we can be more precise by defining tail
position recursively and saying a call is a tail call if it is in tail position. The definition has one part for each
kind of expression; here are several parts:

• In fun f(x) = e, e is in tail position.

• If an expression is not in tail position, then neither are any of its subexpressions.

• If if e1 then e2 else e3 is in tail position, then e2 and e3 are in tail position (but not e1). (Case-
expressions are similar.)

• If let b1 ... bn in e end is in tail position, then e is in tail position (but no expressions in the
bindings are).

• Function-call arguments are not in tail position.

• ...

Exceptions

ML has a built-in notion of exception. You can raise (also known as throw) an exception by using the raise
primitive. For example, the hd function in the standard library raises the Empty exception when called with
[]:

fun hd xs =
case xs of

[] => raise Empty
| x::_ => x

You can create your own kinds of exceptions with an exception binding. Exceptions can optionally carry
values with them, which let the code raising the exception provide more information:

exception MyUndesirableCondition
exception MyOtherException of int * int

3



Kinds of exceptions are a lot like constructors of a datatype binding. Indeed, they are functions (if they
carry values) or values (if they don’t) that create values of type exn rather than the type of a datatype.
So Empty, MyUndeseriableCondition, and MyOtherException(3,9) are all values of type exn, whereas
MyOtherException has type int*int->exn. Usually we just use exception constructors as arguments to
raise, such as raise MyOtherException(3,9), but we can use them more generally to create values of
type exn.

For example, here is a version of a function that returns the maximum element in a list of integers. Rather
than return an option or raise a particular exception like Empty if called with [], it takes an argument of
type exn and raises it. So the caller can pass in the exception of its choice. (The type-checker can infer that
ex must have type exn because that is the type raise expects for its argument.)

fun maxlist (xs,ex) =
case xs of

[] => raise ex
| x::[] => x
| x::xs’ => Int.max(x,maxlist(xs’,ex))

Notice that calling maxlist([3,4,0],Empty) would not raise an exception; this call passes an exception
value to the function, which the function then does not raise.

The other feature related to exceptions is handling (also known as catching) them. For this, ML has handle-
expressions, which look like e1 handle p => e2 where e1 and e2 are expressions and p is a pattern that
matches an exception. The semantics is to evaluate e1 and have the result be the answer. But if an exception
matching p is raised by e1, then e2 is evaluated and that is the answer for the whole expression. If e1 raises
an exception that does not match p, then the entire handle-expression also raises that exception. Similarly,
if e2 raises an exception, then the whole expression also raises an exception.

As with case-expressions, handle-expression can also have multiple branches each with a pattern and expres-
sion, syntactically separated by |.

4


