CSE341: Programming Languages

Lecture 6
Tail Recursion, Accumulators, Exceptions

Dan Grossman
Fall 2011
Two unrelated topics

1. Tail recursion

2. Exceptions
Recursion

Should now be comfortable with recursion:

- No harder than using a loop (whatever that is 😊)

- Often much easier than a loop
 - When processing a tree (e.g., evaluate an arithmetic expression)
 - Examples like appending two lists
 - Avoids mutation even for local variables

- Now:
 - How to reason about efficiency of recursion
 - The importance of tail recursion
 - Using an accumulator to achieve tail recursion
 - [No new language features here]
Call-stacks

While a program runs, there is a call stack of function calls that have started but not yet returned

– Calling a function \(f \) pushes an instance of \(f \) on the stack
– When a call to \(f \) finishes, it is popped from the stack

These stack-frames store information like the value of local variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same function
Example

fun fact n = if n=0 then 1 else n*fact(n-1)

val x = fact 3
Example Revised

```
fun fact n = 
    let fun aux(n,acc) = 
        if n=0
            then acc 
        else aux(n-1,acc*n)
    in
        aux(n,1)
    end

val x = fact 3
```

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)
The call-stacks

```
fact 3
  aux(3,1)
fact 3: __
  aux(3,1): __
  aux(2,3)
aux(1,6)
aux(0,6)
```

```

fact 3: __
  aux(3,1): __
  aux(2,3): __
aux(1,6): __
aux(0,6)
```

```

fact 3: __
  aux(3,1): __
  aux(2,3): __
aux(1,6): 6
aux(0,6): 6
```

Etc…
An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee’s result and return it without any further evaluation.

ML recognizes these tail calls in the compiler and treats them differently:

- Pop the caller before the call, allowing callee to reuse the same stack space
- (Along with other optimizations,) as efficient as a loop

(Reasonable to assume all functional-language implementations do tail-call optimization)
What really happens

fun fact n =
 let fun aux(n,acc) =
 if n=0
 then acc
 else aux(n-1,acc*n)
 in
 aux(n,1)
 end
val x = fact 3

fact 3 aux(3,1) aux(2,3) aux(1,6) aux(0,6)
Moral

• Where reasonably elegant, feasible, and important, rewriting functions to be *tail-recursive* can be much more efficient
 – Tail-recursive: recursive calls are tail-calls

• There is also a *methodology* to guide this transformation:
 – Create a helper function that takes an *accumulator*
 – Old base case becomes initial accumulator
 – New base case becomes final accumulator
Another example

```haskell
fun sum xs =
  case xs of
    [] => 0
    | x::xs' => x + sum xs'
```

```haskell
fun sum xs =
  let fun aux(xs,acc) =
    case xs of
      [] => acc
      | x::xs' => aux(xs',x+acc)
  in
    aux(xs,0)
  end
```
And another

fun rev xs =
 case xs of
 [] => []
 | x::xs' => (rev xs) @ [x]

fun rev xs =
 let fun aux(xs,acc) =
 case xs of
 [] => acc
 | x::xs' => aux(xs',x::acc)
 in
 aux(xs,[])
 end
Actually **much better**

\[
\text{fun } \text{rev } \text{xs } = \\
\text{case } \text{xs } \text{of} \\
\;
\begin{array}{l}
[] \Rightarrow [] \\
| \ x::xs' \Rightarrow (\text{rev } \text{xs}) \ @ \ [x]
\end{array}
\]

- For **fact** and **sum**, tail-recursion is faster but both ways linear time
- The non-tail recursive **rev** is quadratic because each recursive call uses append, which must traverse the first list
 - And 1+2+…+(length-1) is almost length*length/2 (cf. CSE332)
 - Moral: beware list-append, especially within outer recursion
- Cons is constant-time (and fast), so the accumulator version rocks
Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space.

Most obvious examples are functions that process trees.

In these cases, the natural recursive approach is the way to go.

– You could get one recursive call to be a tail call, but rarely worth the complication.

[See max_constant example for arithmetic expressions]
Precise definition

If the result of \(f \ x \) is the “immediate result” for the enclosing function body, then \(f \ x \) is a tail call

Can define this notion more precisely…

- A \emph{tail call} is a function call in \emph{tail position}
- If an expression is not in tail position, then no subexpressions are
- In \texttt{fun f p = e}, the body \texttt{e} is in tail position
- If \texttt{if e1 then e2 else e3} is in tail position, then \texttt{e2} and \texttt{e3} are in tail position (but \texttt{e1} is not). (Similar for case-expressions)
- If \texttt{let b1 \ldots bn in e end} is in tail position, then \texttt{e} is in tail position (but no binding expressions are)
- Function-call arguments are not in tail position
- …
Exceptions

An exception binding introduces a new kind of exception

```plaintext
exception MyFirstException
exception MySecondException of int * int
```

The `raise` primitive raises (a.k.a. throws) an exception

```plaintext
raise MyFirstException
raise MySecondException(7,9)
```

A handle expression can handle (a.k.a. catch) an exception

- If doesn’t match, exception continues to propagate

```plaintext
SOME(f x) handle MyFirstException => NONE
SOME(f x) handle MySecondException(x,_) => SOME x
```
Actually...

Exceptions are a lot like datatype constructors...

• Declaring an exception makes a constructor for type \texttt{exn}

• Can pass values of \texttt{exn} anywhere (e.g., function arguments)
 – Not too common to do this but can be useful

• Handle can have multiple branches with patterns for type \texttt{exn}