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Review

« Done: functions, tuples, lists, local bindings, options
« Done: syntax vs. semantics, environments, mutation-free
« Today: Focus on compound types

— New feature: records

« New concept: syntactic sugar (tuples are records)
— New features: datatypes, constructors, case expressions
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How to build bigger types

« Already know:
— Have various base types like int bool unit char

— Ways to build (nested) compound types: tuples, lists, options
« Today: more ways to build compound types

« First: 3 most important type building blocks in any language
— “Each of”: A t value contains values of eachof t1 t2 .. tn

— “One of”: A t value contains values ofoneof tl1 t2 .. tn
— “Self reference” A t value can refer to other t values

Remarkable: A lot of data can be described with just these
building blocks

Note: These are not the common names for these concepts
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Examples

Tuples build each-of types
- int * bool contains an int and a bool

Options build one-of types
— int option contains an int or it contains no data

Lists use all three building blocks

— int list contains an int and another int listorit
contains no data

And of course we can nest compound types
— ((int * int) option) * (int list list)) option
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Rest of today

« Another way to build each-of types in ML
— Records: have named fields
— Connection to tuples and idea of syntactic sugar

« A way to build and use our own one-of types in ML
— For example, a type that contains and int or a string

— Will lead to pattern-matching (more next lecture), one of
ML'’s coolest and strangest-to-Java-programmers features

— How OOP does one-of types discussed later in course
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Records

Record values have fields (any name) holding values
{£1 = vl1l, .., £fn = wvn}

Record types have fields (and name) holding types
{£1 : €1, .., £n : tn}

The order of fields in a record value or type never matters
— REPL alphabetizes fields just for consistency

Building records:
{f1l = el, .., £n = en}

Accessing components:
#myfieldname e

(Evaluation rules and type-checking as expected)
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Example

{name = “Amelia”, id = 41123 - 12}
Evaluates to
{id = 41111, name = “Amelia”}
And has type

{id : int, name : string}

If some expression such as a variable x has this type, then get
fields with: #id x #name x

Note we didn’t have to declare any record types
— The same program could also make a

{id=true,ego=false} oftype {id:bool,ego:bool}
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By name vs. by position

 Little difference between (4,7,9) and {£=4,g=7,h=9}
— Tuples a little shorter
— Records a little easier to remember “what is where”

— Generally a matter of taste, but for many (6? 8? 12?) fields, a
record is usually a better choice

« A common decision for a construct’s syntax is whether to refer

to things by position (as in tuples) or by some (field) name (as
with records)

— A common hybrid is like with Java method arguments (and
ML functions as used so far):

 Caller uses position
» Callee uses variables
« Could totally do it differently; some languages have
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The truth about tuples

Last week we gave tuples syntax, type-checking rules, and
evaluation rules

But we could have done this instead:
— Tuple syntax is just a different way to write certain records
- (el,..,en) is another way of writing {1=el, .., n=en}
— tl*._.*tn Is another way of writing {1:t1,..,n:tn}
— |n other words, records with field names 1, 2, ...

In fact, this is how ML actually defines tuples

— Other than special syntax in programs and printing, they
don’t exist

— You really can write {1=4,2=7,3=9}, but it's bad style
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Syntactic sugar

“Tuples are just syntactic sugar for
records with fields named 1, 2, ... n”

« Syntactic: Can describe the semantics entirely by the
corresponding record syntax

« Sugar: They make the language sweeter ©

Will see many more examples of syntactic sugar
— They simplify understanding the language
— They simplify implementing the language
Why? Because there are fewer semantics to worry about even
though we have the syntactic convenience of tuples
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Datatype bindings

A “strange” (?) and totally awesome (!) way to make one-of types:
— A datatype binding

= TwoInts of int * int
| Str of string
| Pizza

datatype mytype

« Adds a new type mytype to the environment
e Adds constructors to the environment: TwoInts, Str, and Pizza

« A constructor is (among other things), a function that makes
values of the new type (or is a value of the new type):

— TwoInts : int * int -> mytype
— Str : string -> mytype
— Pizza : mytype
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The values we make

= TwolInts of int * int
| Str of string
| Pizza

datatype mytype

« Any value of type mytype is made from one of the constructors
« The value contains:
— A “tag” for “which constructor” (e.g., TwoInts)

The corresponding data (e.g., (7,9))

- Examples:

Fall 2011

TwoInts (3+4,5+4) evaluatesto TwoInts (7,9)

Str(if true then “hi” else “bye”) evaluatesto
Str(“hi”)

Pizza IS a value
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Using them
So we know how to build datatype values; need to access them

There are two aspects to accessing a datatype value
1. Check what variant it is (what constructor made it)
2. Extract the data (if that variant has any)

Notice how our other one-of types used functions for this:
« null and iSome check variants

 hd, tl, and valOf extract data (raise exception on wrong variant)

ML could have done the same for datatype bindings
— For example, functions like “isStr” and “getStrData”
— Instead it did something better
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Case

ML combines the two aspects of accessing a one-of value with a
case expression and pattern-matching

— Pattern-matching much more general/powerful (lecture 5)

Example:

fun £ x = (* £ has type mytype -> int *)
case x of
Pizza => 3
| TwoInts(il,i2) => il+i2
| Str s => String.size s

« A multi-branch conditional to pick branch based on variant
« Extracts data and binds to variables local to that branch

» Type-checking: all branches must have same type

« Evaluation: evaluate between case ... of and right branch
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Patterns

In general the syntax is:

case e(0 of

pl => el
| p2 => e2
| pn => en

For today, each pattern is a constructor name followed by the right
number of variables (i.e.,CorC xorC(x,y) or...)

— Syntactically most patterns (all today) look like expressions
— But patterns are not expressions

 We do not evaluate them
 We see If the result of e0 matches them
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Why this way Is better

0. You can use pattern-matching to write your own testing and
data-extractions functions if you must

— But don’t do that on your homework

1. You can’t forget a case (inexhaustive pattern-match a warning)
2. You can’t duplicate a case (a type-checking error)

3. You won't forget to test the variant correctly and get an
exception (like hd [1])

4. Pattern-matching can be generalized and made more powerful,
leading to elegant and concise code
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Useful examples

Let’s fix the fact that our only example datatype so far was silly...

 Enumerations, including carrying other data

datatype suit = Club | Diamond | Heart | Spade

datatype card value = Jack | Queen | King
| Ace | Num of int

« Alternate ways of representing data about things (or people ©)

datatype id = StudentNum of int
| Name of string
* (string option)
* string
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Don’t do this

Unfortunately, bad training and languages that make one-of types
Inconvenient lead to common bad style where each-of types are
used where one-of types are the right tool

(* use the studen num and ignore other
fields unless the student num is ~1 ¥*)

{ student num : int,

first : string,
middle : string option,
last : string }

» Approach gives up all the benefits of the language enforcing
every value is one variant, you don'’t forget branches, etc.

 And it makes it less clear what you are doing
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That said...

But if instead, the point is that every “person” in your program has a
name and maybe a student number, then each-of is the way to go:

{ student num : int option,

first : string,
middle : string option,
last : string }
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Expression Trees

A more exciting (?) example of a datatype, using self-reference

datatype exp = Constant of int
| Negate of exp

| Add of exp * exp
I

Multiply of exp * exp

An expression in ML of type exp:
Add (Constant (10+9), Negate (Constant 4))

How to picture the resulting value in your head:
Add

N

Constant Negate

I |
19 Constant
|

4
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Recursion

Not surprising:
Functions over recursive datatypes are usually recursive

fun eval e =
case e of

Constant 1 => 1
| Negate e2 => ~ (eval e2)
| Add(el,e2) => (eval el) + (eval e2)

| Multiply(el,e2) => (eval el) * (eval e2)
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