CSE341: Programming Languages

Lecture 4
Records (“each of”), Datatypes (“one of"),
Case Expressions

Dan Grossman
Fall 2011

Review

« Done: functions, tuples, lists, local bindings, options
« Done: syntax vs. semantics, environments, mutation-free
« Today: Focus on compound types

— New feature: records

« New concept: syntactic sugar (tuples are records)
— New features: datatypes, constructors, case expressions

Fall 2011 CSE341: Programming Languages

How to build bigger types

« Already know:
— Have various base types like int bool unit char

— Ways to build (nested) compound types: tuples, lists, options
« Today: more ways to build compound types

« First: 3 most important type building blocks in any language
— “Each of”: A t value contains values of eachof t1 t2 .. tn

— “One of”: A t value contains values ofoneof tl1 t2 .. tn
— “Self reference” A t value can refer to other t values

Remarkable: A lot of data can be described with just these
building blocks

Note: These are not the common names for these concepts

Fall 2011 CSE341: Programming Languages 3

Examples

Tuples build each-of types
- int * bool contains an int and a bool

Options build one-of types
— int option contains an int or it contains no data

Lists use all three building blocks

— int list contains an int and another int listorit
contains no data

And of course we can nest compound types
— ((int * int) option) * (int list list)) option

Fall 2011 CSE341: Programming Languages 4

Rest of today

« Another way to build each-of types in ML
— Records: have named fields
— Connection to tuples and idea of syntactic sugar

« A way to build and use our own one-of types in ML
— For example, a type that contains and int or a string

— Will lead to pattern-matching (more next lecture), one of
ML'’s coolest and strangest-to-Java-programmers features

— How OOP does one-of types discussed later in course

Fall 2011 CSE341: Programming Languages

Records

Record values have fields (any name) holding values
{£1 = vl1l, .., £fn = wvn}

Record types have fields (and name) holding types
{£1 : €1, .., £n : tn}

The order of fields in a record value or type never matters
— REPL alphabetizes fields just for consistency

Building records:
{f1l = el, .., £n = en}

Accessing components:
#myfieldname e

(Evaluation rules and type-checking as expected)

Fall 2011 CSE341: Programming Languages

Example

{name = “Amelia”, id = 41123 - 12}
Evaluates to
{id = 41111, name = “Amelia”}
And has type

{id : int, name : string}

If some expression such as a variable x has this type, then get
fields with: #id x #name x

Note we didn’t have to declare any record types
— The same program could also make a

{id=true,ego=false} oftype {id:bool,ego:bool}

Fall 2011 CSE341: Programming Languages

By name vs. by position

 Little difference between (4,7,9) and {£=4,g=7,h=9}
— Tuples a little shorter
— Records a little easier to remember “what is where”

— Generally a matter of taste, but for many (6? 8? 12?) fields, a
record is usually a better choice

« A common decision for a construct’s syntax is whether to refer

to things by position (as in tuples) or by some (field) name (as
with records)

— A common hybrid is like with Java method arguments (and
ML functions as used so far):

 Caller uses position
» Callee uses variables
« Could totally do it differently; some languages have

Fall 2011 CSE341: Programming Languages 8

The truth about tuples

Last week we gave tuples syntax, type-checking rules, and
evaluation rules

But we could have done this instead:
— Tuple syntax is just a different way to write certain records
- (el,..,en) is another way of writing {1=el, .., n=en}
— tl*._.*tn Is another way of writing {1:t1,..,n:tn}
— |n other words, records with field names 1, 2, ...

In fact, this is how ML actually defines tuples

— Other than special syntax in programs and printing, they
don’t exist

— You really can write {1=4,2=7,3=9}, but it's bad style

Fall 2011 CSE341: Programming Languages

Syntactic sugar

“Tuples are just syntactic sugar for
records with fields named 1, 2, ... n”

« Syntactic: Can describe the semantics entirely by the
corresponding record syntax

« Sugar: They make the language sweeter ©

Will see many more examples of syntactic sugar
— They simplify understanding the language
— They simplify implementing the language
Why? Because there are fewer semantics to worry about even
though we have the syntactic convenience of tuples

Fall 2011 CSE341: Programming Languages 10

Datatype bindings

A “strange” (?) and totally awesome (!) way to make one-of types:
— A datatype binding

= TwoInts of int * int
| Str of string
| Pizza

datatype mytype

« Adds a new type mytype to the environment
e Adds constructors to the environment: TwoInts, Str, and Pizza

« A constructor is (among other things), a function that makes
values of the new type (or is a value of the new type):

— TwoInts : int * int -> mytype
— Str : string -> mytype
— Pizza : mytype

Fall 2011 CSE341: Programming Languages 11

The values we make

= TwolInts of int * int
| Str of string
| Pizza

datatype mytype

« Any value of type mytype is made from one of the constructors
« The value contains:
— A “tag” for “which constructor” (e.g., TwoInts)

The corresponding data (e.g., (7,9))

- Examples:

Fall 2011

TwoInts (3+4,5+4) evaluatesto TwoInts (7,9)

Str(if true then “hi” else “bye”) evaluatesto
Str(“hi”)

Pizza IS a value

CSE341: Programming Languages 12

Using them
So we know how to build datatype values; need to access them

There are two aspects to accessing a datatype value
1. Check what variant it is (what constructor made it)
2. Extract the data (if that variant has any)

Notice how our other one-of types used functions for this:
« null and iSome check variants

 hd, tl, and valOf extract data (raise exception on wrong variant)

ML could have done the same for datatype bindings
— For example, functions like “isStr” and “getStrData”
— Instead it did something better

Fall 2011 CSE341: Programming Languages 13

Case

ML combines the two aspects of accessing a one-of value with a
case expression and pattern-matching

— Pattern-matching much more general/powerful (lecture 5)

Example:

fun £ x = (* £ has type mytype -> int *)
case x of
Pizza => 3
| TwoInts(il,i2) => il+i2
| Str s => String.size s

« A multi-branch conditional to pick branch based on variant
« Extracts data and binds to variables local to that branch

» Type-checking: all branches must have same type

« Evaluation: evaluate between case ... of and right branch

Fall 2011 CSE341: Programming Languages 14

Patterns

In general the syntax is:

case e(0 of

pl => el
| p2 => e2
| pn => en

For today, each pattern is a constructor name followed by the right
number of variables (i.e.,CorC xorC(x,y) or...)

— Syntactically most patterns (all today) look like expressions
— But patterns are not expressions

 We do not evaluate them
 We see If the result of e0 matches them

Fall 2011 CSE341: Programming Languages 15

Why this way Is better

0. You can use pattern-matching to write your own testing and
data-extractions functions if you must

— But don’t do that on your homework

1. You can’t forget a case (inexhaustive pattern-match a warning)
2. You can’t duplicate a case (a type-checking error)

3. You won't forget to test the variant correctly and get an
exception (like hd [1])

4. Pattern-matching can be generalized and made more powerful,
leading to elegant and concise code

Fall 2011 CSE341: Programming Languages 16

Useful examples

Let’s fix the fact that our only example datatype so far was silly...

 Enumerations, including carrying other data

datatype suit = Club | Diamond | Heart | Spade

datatype card value = Jack | Queen | King
| Ace | Num of int

« Alternate ways of representing data about things (or people ©)

datatype id = StudentNum of int
| Name of string
* (string option)
* string

Fall 2011 CSE341: Programming Languages 17

Don’t do this

Unfortunately, bad training and languages that make one-of types
Inconvenient lead to common bad style where each-of types are
used where one-of types are the right tool

(* use the studen num and ignore other
fields unless the student num is ~1 ¥*)

{ student num : int,

first : string,
middle : string option,
last : string }

» Approach gives up all the benefits of the language enforcing
every value is one variant, you don'’t forget branches, etc.

 And it makes it less clear what you are doing

Fall 2011 CSE341: Programming Languages 18

That said...

But if instead, the point is that every “person” in your program has a
name and maybe a student number, then each-of is the way to go:

{ student num : int option,

first : string,
middle : string option,
last : string }

Fall 2011 CSE341: Programming Languages 19

Expression Trees

A more exciting (?) example of a datatype, using self-reference

datatype exp = Constant of int
| Negate of exp

| Add of exp * exp
I

Multiply of exp * exp

An expression in ML of type exp:
Add (Constant (10+9), Negate (Constant 4))

How to picture the resulting value in your head:
Add

N

Constant Negate

I |
19 Constant
|

4
Fall 2011 CSE341: Programming Languages 20

Recursion

Not surprising:
Functions over recursive datatypes are usually recursive

fun eval e =
case e of

Constant 1 => 1
| Negate e2 => ~ (eval e2)
| Add(el,e2) => (eval el) + (eval e2)

| Multiply(el,e2) => (eval el) * (eval e2)

Fall 2011 CSE341: Programming Languages 21

