
CSE341: Programming Languages 
 

Lecture 4 

Records (“each of”), Datatypes (“one of”),  

Case Expressions 

Dan Grossman 

Fall 2011 



Review 

• Done: functions, tuples, lists, local bindings, options 

 

• Done: syntax vs. semantics, environments, mutation-free 

 

• Today: Focus on compound types 

– New feature: records  

• New concept: syntactic sugar (tuples are records) 

– New features: datatypes, constructors, case expressions 

 

Fall 2011 2 CSE341: Programming Languages 



How to build bigger types 

• Already know: 

– Have various base types like  int bool unit char 

– Ways to build (nested) compound types: tuples, lists, options 
 

• Today: more ways to build compound types 
 

• First:  3 most important type building blocks in any language 

– “Each of”:  A t value contains values of each of t1 t2 … tn 

– “One of”:  A t value contains values of one of t1 t2 … tn 

– “Self reference”:  A t value can refer to other t values 

Remarkable: A lot of data can be described with just these 

building blocks 
 

Note: These are not the common names for these concepts 

 
Fall 2011 3 CSE341: Programming Languages 



Examples 

• Tuples build each-of types 

– int * bool contains an int and a bool 

 

• Options build one-of types 

– int option contains an int or it contains no data 

 

• Lists use all three building blocks 

– int list contains an int and another int list or it 

contains no data 

 

• And of course we can nest compound types 

– ((int * int) option) * (int list list)) option 

Fall 2011 4 CSE341: Programming Languages 



Rest of today 

• Another way to build each-of types in ML 

– Records:  have named fields 

– Connection to tuples and idea of syntactic sugar 

 

• A way to build and use our own one-of types in ML 

– For example, a type that contains and int or a string 

– Will lead to pattern-matching (more next lecture), one of 

ML’s coolest and strangest-to-Java-programmers features 

– How OOP does one-of types discussed later in course 

 

Fall 2011 5 CSE341: Programming Languages 



Records 

Record values have fields (any name) holding values 

 

Record types have fields (and name) holding types 

 
 

The order of fields in a record value or type never matters 

– REPL alphabetizes fields just for consistency 
 

Building records: 

 

Accessing components: 

 
 

(Evaluation rules and type-checking as expected) 

Fall 2011 6 CSE341: Programming Languages 

 {f1 = v1, …, fn = vn} 

 {f1 : t1, …, fn : tn} 

 {f1 = e1, …, fn = en} 

 #myfieldname e 



Example 
 

 

Evaluates to 

 
 

And has type 

 

 

If some expression such as a variable x has this type, then get 

fields with:  

 

Note we didn’t have to declare any record types 

– The same program could also make a  

 {id=true,ego=false} of type {id:bool,ego:bool} 

 

Fall 2011 7 CSE341: Programming Languages 

 {name = “Amelia”, id = 41123 - 12} 

 {id = 41111, name = “Amelia”} 

 {id : int, name : string} 

 #id x     #name x 



By name vs. by position 

• Little difference between (4,7,9) and {f=4,g=7,h=9} 

– Tuples a little shorter 

– Records a little easier to remember “what is where” 

– Generally a matter of taste, but for many (6? 8? 12?) fields, a 

record is usually a better choice 
 

• A common decision for a construct’s syntax is whether to refer 

to things by position (as in tuples) or by some (field) name (as 

with records) 

– A common hybrid is like with Java method arguments (and 

ML functions as used so far): 

• Caller uses position 

• Callee uses variables 

• Could totally do it differently; some languages have 

Fall 2011 8 CSE341: Programming Languages 



The truth about tuples 

Last week we gave tuples syntax, type-checking rules, and 

evaluation rules 

 

But we could have done this instead: 

– Tuple syntax is just a different way to write certain records 

– (e1,…,en) is another way of writing {1=e1,…,n=en} 

– t1*…*tn is another way of writing {1:t1,…,n:tn} 

– In other words, records with field names 1, 2, … 

 

In fact, this is how ML actually defines tuples 

– Other than special syntax in programs and printing, they 

don’t exist 

– You really can write {1=4,2=7,3=9}, but it’s bad style 

 
Fall 2011 9 CSE341: Programming Languages 



Syntactic sugar 

“Tuples are just syntactic sugar for 

records with fields named 1, 2, … n” 

 

• Syntactic: Can describe the semantics entirely by the 

corresponding record syntax 

 

• Sugar: They make the language sweeter  

 

Will see many more examples of syntactic sugar 

– They simplify understanding the language 

– They simplify implementing the language 

Why? Because there are fewer semantics to worry about even 

though we have the syntactic convenience of tuples 

 
Fall 2011 10 CSE341: Programming Languages 



Datatype bindings 

A “strange” (?) and totally awesome (!) way to make one-of types: 

– A datatype binding 

Fall 2011 11 CSE341: Programming Languages 

datatype mytype = TwoInts of int * int 

                | Str of string 

                | Pizza 

• Adds a new type mytype to the environment 

• Adds constructors to the environment: TwoInts, Str, and Pizza 

• A constructor is (among other things), a function that makes 

values of the new type (or is a value of the new type): 

– TwoInts : int * int -> mytype 

– Str : string -> mytype 

– Pizza : mytype 

 



The values we make 

• Any value of type mytype is made from one of the constructors 

• The value contains: 

− A “tag” for “which constructor” (e.g., TwoInts) 

− The corresponding data (e.g., (7,9)) 

− Examples:  

− TwoInts(3+4,5+4) evaluates to TwoInts(7,9) 

− Str(if true then “hi” else “bye”) evaluates to 

Str(“hi”) 

− Pizza is a value 

Fall 2011 12 CSE341: Programming Languages 

datatype mytype = TwoInts of int * int 

                | Str of string 

                | Pizza 



Using them 

So we know how to build datatype values; need to access them 

 

There are two aspects to accessing a datatype value 

1. Check what variant it is (what constructor made it)  

2. Extract the data (if that variant has any) 

 

Notice how our other one-of types used functions for this: 

• null and iSome check variants 

• hd, tl, and valOf extract data (raise exception on wrong variant) 

 

ML could have done the same for datatype bindings 

– For example, functions like “isStr” and “getStrData” 

– Instead it did something better 

 
Fall 2011 13 CSE341: Programming Languages 



Case 

ML combines the two aspects of accessing a one-of value with a 

case expression and pattern-matching 

– Pattern-matching much more general/powerful (lecture 5) 
 

Example: 

 

 

 

 

 

• A multi-branch conditional to pick branch based on variant 

• Extracts data and binds to variables local to that branch 

• Type-checking: all branches must have same type 

• Evaluation: evaluate between case … of and right branch 

Fall 2011 14 CSE341: Programming Languages 

fun f x = (* f has type mytype -> int *) 

    case x of  

        Pizza => 3 

      | TwoInts(i1,i2) => i1+i2 

      | Str s => String.size s 



Patterns 

In general the syntax is: 

 

 

 

 

 

For today, each pattern is a constructor name followed by the right 
number of variables (i.e., C or C x or C(x,y) or …) 

– Syntactically most patterns (all today) look like expressions 

– But patterns are not expressions 

• We do not evaluate them 

• We see if the result of e0 matches them 

Fall 2011 15 CSE341: Programming Languages 

 case e0 of  

      p1 => e1 

    | p2 => e2  

      … 

    | pn => en 



Why this way is better 

0.  You can use pattern-matching to write your own testing and 

data-extractions functions if you must 

– But don’t do that on your homework 

 

1. You can’t forget a case (inexhaustive pattern-match a warning) 

2. You can’t duplicate a case (a type-checking error) 

3. You won’t forget to test the variant correctly and get an 
exception (like hd []) 

4. Pattern-matching can be generalized and made more powerful, 

leading to elegant and concise code 

Fall 2011 16 CSE341: Programming Languages 



Useful examples 

Let’s fix the fact that our only example datatype so far was silly… 

 

• Enumerations, including carrying other data 

 

 

 

 

• Alternate ways of representing data about things (or people ) 

Fall 2011 17 CSE341: Programming Languages 

datatype suit = Club | Diamond | Heart | Spade 

datatype card_value = Jack | Queen | King  

                    | Ace | Num of int 

datatype id = StudentNum of int  

            | Name of string  

                      * (string option)  

                      * string 



Don’t do this 

Unfortunately, bad training and languages that make one-of types 

inconvenient lead to common bad style where each-of types are 

used where one-of types are the right tool 

 

 

 

 

 

 
 

• Approach gives up all the benefits of the language enforcing 

every value is one variant, you don’t forget branches, etc. 
 

• And it makes it less clear what you are doing 

 

 
Fall 2011 18 CSE341: Programming Languages 

(* use the studen_num and ignore other 

fields unless the student_num is ~1 *) 

{ student_num : int,  

  first       : string, 

  middle      : string option,  

  last        : string } 

 



That said… 

But if instead, the point is that every “person” in your program has a 

name and maybe a student number, then each-of is the way to go: 

Fall 2011 19 CSE341: Programming Languages 

{ student_num : int option,  

  first       : string, 

  middle      : string option,  

  last        : string } 

 



Expression Trees 

A more exciting (?) example of a datatype, using self-reference 

 

 

 

 
 

An expression in ML of type exp:  

 
 

How to picture the resulting value in your head:  

Fall 2011 20 CSE341: Programming Languages 

datatype exp = Constant of int 

             | Negate   of exp 

             | Add      of exp * exp 

             | Multiply of exp * exp 

 Add (Constant (10+9), Negate (Constant 4)) 

Add 

Constant 

19 

Negate 

Constant 

4 



Recursion 

Not surprising:  

Functions over recursive datatypes are usually recursive 

Fall 2011 21 CSE341: Programming Languages 

fun eval e =  

   case e of  

        Constant i      => i 

      | Negate e2       => ~ (eval e2) 

      | Add(e1,e2)      => (eval e1) + (eval e2) 

      | Multiply(e1,e2) => (eval e1) * (eval e2) 

 


