
CSE341, Fall 2011, Lecture 3 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

This lecture has three topics:

• Let-expressions, an absolutely crucial feature that allows for local variables in a very simple, general
and flexible way. It is crucial for style and for efficiency.

• Options, which are a way to build data that has 0 or 1 items. We could use 0-element and 1-element
lists instead, but using options is better style because it makes clear that the number of items must be
0 or 1.

• Benefits of not being able to mutate (i.e., assign to) variables and parts of data structures.

Let expressions

A let-expression lets us have local variables. In fact, it lets us have local bindings of any sort, including
function bindings. Because it is a kind of expression, it can appear anywhere an expression can.

Syntactically, a let-expression is:

let b1 b2 ... bn in e end

where each bi is a binding and e is an expression.

The type-checking and semantics of a let-expression is much like the semantics of the top-level bindings
in our ML program. We evaluate each binding in turn, creating a larger environment for the subsequent
bindings. So we can use all the earlier bindings for the later ones, and we can use them all for e. We call the
scope of a binding “where it can be used,” so the scope of a binding in a let-expression is the later bindings
in that let-expression and the “body” of the let-expression (the e). The value e evaluates to is the value for
the entire let-expression, and, unsurprisingly, the type of e is the type for the entire let-expression.

For example, this expression evaluates to 7; notice how one inner binding for x shadows an outer one.

let val x = 1

in

(let val x = 2 in x+1 end) + (let val y = x+2 in y+1 end)

end

Also notice how let-expressions are expressions so they can appear as a subexpression in an addition (though
this example is silly and bad style because it is hard to read).

Let-expressions can bind functions too, since functions are just another kind of binding. If a helper function
is needed by only one other function and is unlikely to be useful elsewhere, it is good style to bind it locally.
For example, here we use a local helper function to help produce the list [1,2,...,x]:

fun countup_from1 (x:int) =

let fun count (from:int, to:int) =

if from=to

then to::[]
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else from :: count(from+1,to)

in

count(1,x)

end

However, we can do better. When we evaluate a call to count, we evaluate count’s body in a dynamic
environment that is the environment where count was defined, extended with bindings for count’s arguments.
The code above does not really utilize this: count’s body uses only from, to, and count (for recursion). It
could also use x, since that is in the environment when count is defined. Then we do not need to at all,
since in the code above it always has the same value as x. So this is better style:

fun countup_from1_better (x:int) =

let fun count (from:int) =

if from=x

then x::[]

else from :: count(from+1)

in

count 1

end

This technique — define a local function that uses other variables in scope — is a hugely common and
convenient thing to do in functional programming. It is a shame that many non-functional languages have
little or no support for doing something like it.

Local variables are often good style for keeping code readable. They can be much more important than that
when they bind to the results of potentially expensive computations. For example, consider this code that
does not use let-expressions:

fun bad_max (lst : int list) =

if null lst

then 0

else if null (tl lst)

then hd lst

else if hd lst > bad_max(tl lst)

then hd lst

else bad_max(tl lst)

If you call bad_max with countup_from1 30, it will make approximately 230 (over one billion) recursive calls
to itself. The reason is an “exponential blowup” — the code calls bad_max(tl lst) twice and each of those
calls call bad_max two more times (so four total) and so on. This sort of programming “error” can be difficult
to detect because it can depend on your test data (if the list counts down, the algorithm makes only 30
recursive calls instead of 230).

We can use let-expressions to avoid repeated computations. This version computes the max of the tail of
the list once and stores the resulting value in tl_ans.

fun good_max (lst : int list) =

if null lst

then 0

else if null (tl lst)

then hd lst

else
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(* for style, could also use a let-binding for hd lst *)

let val tl_ans = good_max(tl lst)

in

if hd lst > tl_ans

then hd lst

else tl_ans

end

Options

The previous example does not properly handle the empty list — it returns 0. This is bad style because 0
is really not the maximum value of 0 numbers. There is no good answer, but we should deal with this case
reasonably. One possibility is to raise an exception; you can learn about SML exceptions on your own if you
are interested. Instead, let’s change the return type to either return the maximum number or indicate the
input list was empty so there is no maximum. Given the constructs we have, we could “code this up” by
return an int list, using [] if the input was the empty list and a list with one integer (the maximum) if
the input list was not empty.

While that works, lists are “overkill” — we will always return a list with 0 or 1 elements. So a list is not
really a precise description of what we are returning. The ML library has “options” which are a precise
description: an option value has either 0 or 1 thing: NONE is an option value “carrying nothing” whereas
SOME e evaluates e to a value v and becomes the option carrying the one value v. The type of NONE is
’a option and the type of SOME e is t option if e has type t.

Given a value, how do you use it? Just like we have null to see if a list is empty, we have isSome which
evaluates to false if its argument is NONE. Just like we have hd and tl to get parts of lists (raising an
exception for the empty list), we have valOf to get the value carried by SOME (raising an exception for NONE).

Using options, here is a better version with return type int option:

fun better_max (lst : int list) =

if null lst

then NONE

else

let val tl_ans = better_max(tl lst)

in if isSome tl_ans andalso valOf tl_ans > hd lst

then tl_ans

else SOME (hd lst)

end

The version above works just fine and is a reasonable recursive function because it does not repeat any
potentially expensive computations. But it is both awkward and a little inefficient to have each recursive
call except the last one create an option with SOME just to have its caller access the value underneath. Here
is an alternative approach where we use a local helper function for non-empty lists and then just have the
outer function return an option. Notice the helper function would raise an exception if called with [], but
since it is defined locally, we can be sure that will never happen.

fun better_max2 (lst : int list) =

if null lst

then NONE

else let (* fine to assume argument nonempty because it is local *)

fun max_nonempty (lst : int list) =

if null (tl lst) (* lst better not be [] *)
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then hd lst

else let val tl_ans = max_nonempty(tl lst)

in

if hd lst > tl_ans

then hd lst

else tl_ans

end

in

SOME (max_nonempty lst)

end

Lack of Mutation and Benefits Thereof:

In ML, there is no way to change the contents of a binding, a tuple, or a list. If x maps to some value like the
list of pairs [(3,4),(7,9)] in some environment, then x will forever map to that list in that environment.
There is no assignment statement that changes x to map to a different list. (You can introduce a new
binding that shadows x, but that will not affect any code that looks up the “original” x in an environment.)
There is no assignment statement that lets you change the head or tail of a list. And there is no assignment
statement that lets you change the contents of a tuple. So we have constructs for building compound data
and accessing the pieces, but no constructs for mutating the data we have built.

This is a really powerful feature! That may surprise you: how can a language not having something be a
feature? Because if there is no such feature, then when you are writing your code you can rely on no other code
dong something that would make your code wrong, incomplete, or difficult to use. Having immutable data
is probably the most important “non-feature” a language can have, and it is one of the main contributions
of functional programming.

While there are various advantages to immutable data, here we will focus on a big one: it makes sharing
and aliasing irrelevant. Let’s re-consider two examples from the previous lecture before picking on Java (and
every other language where mutable data is the norm and assignment statements run rampant).

fun sort_pair (pr : int*int) =

if (#1 pr) > (#2 pr)

then pr

else ((#2 pr),(#1 pr)) (* or could write: else swap pr *)

In sort_pair, we clearly build and return a new pair in the else-branch, but in the then-branch, do we
return a copy of the pair referred to by pr or do we return an alias, where a caller like:

val x = (4,3)

val y = sort_pair x

would now have x and y be aliases for the same pair? The answer is you cannot tell — there is no construct
in ML that can figure out whether or not x and y are aliases, and no reason to worry that they might be. If
we had mutation, life would be different. Suppose we could say, “change the first part of the pair x is bound
to so that it holds 5 instead of 4.” Then we would have to wonder if #1 y would be 4 or 5.

In case you are curious, we would expect that the code above would create aliasing: by returning pr, the
sort_pair function would return an alias to its argument. That is more efficient than this version, which
would create another pair with exactly the same contents:

fun sort_pair (pr : int*int) =
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if (#1 pr) > (#2 pr)

then (#1 pr, #2 pr)

else ((#2 pr),(#1 pr))

Making the new pair (#1 pr, #2 pr) is bad style, since pr is simpler and will do just as well. Yet in
languages with mutation, programmers make copies like this all the time, exactly to prevent aliasing where
doing an assignment using one variable like x causes unexpected changes to using another variable like y. In
ML, no users of sort_pair can ever tell whether we return a new pair or not.

Our second example is our elegant function for list append:

fun append (lst1 : int list, lst2 : int list) =

if null lst1

then lst2

else hd(lst1) :: append(tl(lst1), lst2)

We can ask a similar question: Does the list returned share any elements with the arguments? Again the
answer does not matter because no caller can tell. And again the answer happens to be yes: we build a new
list that “reuses” all the elements of lst2. This saves space, but would be very confusing if someone could
later mutate lst2. Saving space is a nice advantage of immutable data, but so is simply not having to worry
about whether things are aliased or not when writing down elegant algorithms.

In fact, tl itself thankfully introduces aliasing (though you cannot tell): it returns (an alias to) the tail of
the list, which is always “cheap,” rather than making a copy of the tail of the list, which is “expensive” for
long lists.

The append example is very similar to the sort_pair example, but it is even more compelling because it is
hard to keep track of potential aliasing if you have many lists of potentially large lengths. If I append [1,2]

to [3,4,5], I’ll get some list [1,2,3,4,5] but if later someone can change the [3,4,5] list to be [3,7,5]

is the appended list still [1,2,3,4,5] or is it now [1,2,3,7,5]?

In the analogous Java program, this is a crucial question, which is why Java programmers must obsess over
when references to old objects are used and when new objects are created. There are times when obsessing
over aliasing is the right thing to do and times when avoiding mutation is the right thing to do — functional
programming will help you get better at the latter.

For a final example, the following Java is the key idea behind an actual security hole in an important
(and subsequently fixed) Java library. Suppose we are maintaining permissions for who is allowed to access
something like a file on the disk. It is fine to let everyone see who has permission, but clearly only those
that do have permission can actually use the resource. Consider this wrong code (some parts omitted if not
relevant):

class ProtectedResource {

private Resource theResource = ...;

private String[] allowedUsers = ...;

public String[] getAllowedUsers() {

return allowedUsers;

}

public String currentUser() { ... }

public void useTheResource() {

for(int i=0; i < allowedUsers.length; i++) {

if(currentUser().equals(allowedUsers[i])) {

... // access allowed: use it
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return;

}

}

throw new IllegalAccessExcpetion();

}

}

Can you find the problem? Here it is: getAllowedUsers returns an alias to the allowedUsers array, so any
user can gain access by doing getAllowedUsers()[0] = currentUser(). Oops! This wouldn’t be possible
if we had some sort of array in Java that did not allow its contents to be updated. Instead, in Java we often
have to remember to make a copy. The correction below shows an explicit loop to show in detail what must
be done, but better style would be to use a library method like System.arraycopy or similar methods in
the Arrays class — these library methods exist because array copying is necessarily common, in part due to
mutation.

public String[] getAllowedUsers() {

String[] copy = new String[allowedUsers.length];

for(int i=0; i < allowedUsers.length; i++)

copy[i] = allowedUsers[i];

return copy;

}
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