CSE341: Programming Languages
Lecture 2
Functions, Pairs, Lists

Dan Grossman
Fall 2011
Review

• Building up SML one construct at a time via precise definitions
 – Constructs have syntax, type-checking rules, evaluation rules
 • And reasons they’re in the language
 – Evaluation converts an expression to a value

• So far:
 – Variable bindings
 – Several expression forms: addition, conditionals, …
 – Several types: int bool unit

• Today:
 – Brief discussion on aspects of learning a PL
 – Functions, pairs, and lists [almost enough for all of HW1]
Five different things

1. Syntax: How do you write language constructs?
3. Idioms: What are typical patterns for using language features to express your computation?
4. Libraries: What facilities does the language (or a well-known project) provide “standard”? (E.g., file access, data structures)
5. Tools: What do language implementations provide to make your job easier? (E.g., REPL, debugger, code formatter, …)

These are 5 separate issues
 – In practice, all are essential for good programmers
 – Many people confuse them, but shouldn’t
Our Focus

This course focuses on semantics and idioms

• Syntax is usually uninteresting
 – A fact to learn, like “The American Civil War ended in 1865”
 – People obsess over subjective preferences [yawn]

• Libraries and tools crucial, but often learn new ones on the job
 – We’re learning language semantics and how to use that knowledge to do great things
Function definitions

Functions: the most important building block in the whole course
 – Like Java methods, have arguments and result
 – But no classes, this, return, etc.

Example function binding:

\begin{verbatim}
(* Note: correct only if y>=0 *)

fun pow (x : int, y : int) =
 if y=0
 then 1
 else x * pow(x,y-1)
\end{verbatim}

Note: The body includes a (recursive) function call: \texttt{pow(x,y-1)}
Function bindings: 3 questions

• Syntax: \[
\textbf{fun } x_0 \ (x_1 : t_1, \ldots, \ x_n : t_n) \ = \ e
\]
 – (Will generalize in later lecture)

• Evaluation: \textit{A function is a value!} (No evaluation yet)
 – Adds \(x_0 \) to environment so \textit{later} expressions can \textit{call} it
 – (Function-call semantics will also allow recursion)

• Type-checking:
 – Adds binding \(x_0 : (t_1 * \ldots * t_n) \rightarrow t \) if:
 – Can type-check body \(e \) to have type \(t \) in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • \(x_1 : t_1, \ldots, x_n : t_n \) (arguments with their types)
 • \(x_0 : (t_1 * \ldots * t_n) \rightarrow t \) (for recursion)
More on type-checking

fun x0 (x1 : t1, ..., xn : tn) = e

• New kind of type: (t1 * ... * tn) -> t
 – Result type on right
 – The overall type-checking result is to give x0 this type in rest of program (unlike Java, not for earlier bindings)
 – Arguments can be used only in e (unsurprising)

• Because evaluation of a call to x0 will return result of evaluating e, the return type of x0 is the type of e

• The type-checker “magically” figures out t if such a t exists
 – Later lecture: Requires some cleverness due to recursion
 – More magic after hw1: Later can omit argument types too
Function Calls

A new kind of expression: 3 questions

Syntax: \(e_0 (e_1, \ldots, e_n) \)

- (Will generalize later)
- Parentheses optional if there is exactly one argument

Type-checking:

If:

- \(e_0 \) has some type \((t_1 * \ldots * t_n) \rightarrow t\)
- \(e_1 \) has type \(t_1 \), \ldots, \(e_n \) has type \(t_n \)

Then:

- \(e_0 (e_1, \ldots, e_n) \) has type \(t \)

Example: \texttt{pow(x,y-1)} in previous example has type \texttt{int}
Function-calls continued

\[e_0(e_1, \ldots, e_n) \]

Evaluation:

1. (Under current dynamic environment,) evaluate \(e_0 \) to a function \(\text{fun } x_0 \ (x_1 : t_1, \ldots, x_n : t_n) = e \)
 - Since call type-checked, result will be a function

2. (Under current dynamic environment,) evaluate arguments to values \(v_1, \ldots, v_n \)

3. Result is evaluation of \(e \) in an environment extended to map \(x_1 \) to \(v_1, \ldots, x_n \) to \(v_n \)
 - (“An environment” is actually the environment where the function was defined, and includes \(x_0 \) for recursion)
Example, extended

fun pow (x : int, y : int) =
 if y=0
 then 1
 else x * pow(x,y-1)

fun cube (x : int) =
 pow (x,3)

val sixtyfour = cube 4

val fortytwo = pow(2,4) + pow(4,2) + cube(2) + 2
Some gotchas

Three common “gotchas”

- Bad error messages if you mess up function-argument syntax
- The use of * in type syntax is not multiplication
 - Example: int * int -> int
 - In expressions, * is multiplication: x * pow(x, y-1)
- Cannot refer to later function bindings
 - That’s what the rules say
 - Helper functions must come before their uses
 - Need special construct for mutual recursion (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions
Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
- Now ways to build up data with multiple parts
- This is essential
- Java examples: classes with fields, arrays

Rest of lecture:
- Tuples: fixed “number of pieces” that may have different types
- Lists: any “number of pieces” that all have the same type

Later: Other more general ways to create compound data
Pairs (2-tuples)

We need a way to build pairs and a way to access the pieces.

Build:

- Syntax: \((e_1, e_2)\)
- Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1, v_2)\)
 - A pair of values is a value
- Type-checking: If \(e_1\) has type \(t_1\) and \(e_2\) has type \(t_2\), then the pair expression has type \(t_1 \times t_2\)
 - A new kind of type, the pair type

Pairs (2-tuples)

We need a way to *build* pairs and a way to *access* the pieces

Access:

- **Syntax:** \#1 e and \#2 e

- **Evaluation:** Evaluate e to a pair of values and return first or second piece
 - Example: If e is a variable x, then look up x in environment

- **Type-checking:** If e has type ta * tb, then \#1 e has type ta and \#2 e has type tb
Examples

Functions can take and return pairs

```plaintext
fun swap (pr : int*bool) =
  (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
  (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
  (x div y, x mod y)
```
Tuples

Actually, you can have tuples with more than two parts
 – A new feature: a generalization of pairs

• \((e_1, e_2, \ldots, e_n)\)
• \(t_1 \times t_2 \times \ldots \times t_n\)
• \(#1 e, #2 e, #3 e, \ldots\)

Homework 1 uses triples of type \(\text{int*int*int}\) a lot
Nesting

Pairs and tuples can be nested however you want

– Not a new feature: implied by the syntax and semantics

```plaintext
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1)) (* bool *)
val x3 = (#2 x1) (* bool*int *)
val x4 = ((3,5),((4,8),(0,0)))
  (* (int*int)*((int*int)*(int*int)) *)
```
Lists

• Despite nested tuples, the type of a variable still “commits” to a particular “amount” of data

• In contrast, a list can have any number of elements

• But unlike tuples, all elements have the same type

Need ways to build lists and access the pieces…
Building Lists

• The empty list is a value:
 \[
 []
 \]

• In general, a list of values is a value; elements separated by commas:
 \[
 [v_1, v_2, \ldots, v_n]
 \]

• If e_1 evaluates to v and e_2 evaluates to a list $[v_1, \ldots, v_n]$, then $e_1 :: e_2$ evaluates to $[v, \ldots, v_n]$

 $e_1 :: e_2$ (* pronounced “cons” *)
Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

• **null e** evaluates to **true** if and only if **e** evaluates to **[]**

• If **e** evaluates to **[v1,v2,...,vn]** then **hd e** evaluates to **v1**
 – (raise exception if **e** evaluates to **[]**)

• If **e** evaluates to **[v1,v2,...,vn]** then **tl e** evaluates to **[v2,...,vn]**
 – (raise exception if **e** evaluates to **[]**)
 – Notice result is a list
Type-checking list operations

Lots of new types: For any type t, the type $t\ list$ describes lists where all elements have type t

- Examples: $int\ list \ bool\ list \ int\ list\ list$
 $(int \ast int)\ list \ (int\ list \ast int)\ list$

- So [] can have type $t\ list\ list$ for any type

- SML uses type ‘$a\ list$ to indicate this (“quote a” or “alpha”)

- For $e1::e2$ to type-check, we need a t such that $e1$ has type t and $e2$ has type $t\ list$. Then the result type is $t\ list$

- null : ‘$a\ list\ ->\ bool$

- hd : ‘$a\ list\ ->\ ‘a$

- tl : ‘$a\ list\ ->\ ‘a\ list$
Example list functions

fun sum_list (lst : int list) =
 if null lst
 then 0
 else hd(lst) + sum_list(tl(lst))

fun countdown (x : int) =
 if x=0
 then []
 else x :: countdown (x-1)

fun append (lst1 : int list, lst2 : int list) =
 if null lst1
 then lst2
 else hd (lst1) :: append (tl(lst1), lst2)
Recursion again

Functions over lists are usually recursive

– Only way to “get to all the elements”

• What should the answer be for the empty list?
• What should the answer be for a non-empty list?
 – Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive

– You create a list is out of smaller lists
Lists of pairs

Processing lists of pairs requires no new features. Examples:

```haskell
fun sum_pair_list (lst : (int*int) list) = 
    if null lst 
    then 0 
    else #1(hd lst) + #2(hd lst) + sum_pair_list(tl lst)

fun firsts (lst : (int*int) list) = 
    if null lst 
    then [] 
    else #1(hd lst) :: firsts(tl lst)

fun seconds (lst : (int*int) list) = 
    if null lst 
    then [] 
    else #2(hd lst) :: seconds(tl lst)

fun sum_pair_list2 (lst : (int*int) list) = 
    (sum_list (firsts lst)) + (sum_list (seconds lst))
```