
CSE341: Programming Languages

Lecture 27
Generics vs. Subtyping; Bounded

Polymorphism

Dan Grossman
Fall 2011

Today

1. Compare generics and subtyping

– What each is good for

2. Combine generics and subtyping to get even more benefit
– Example in Java, but as always, ideas more general

Fall 2011 2 CSE341: Programming Languages

What are generics good for?

Some good uses for parametric polymorphism:
• Types for functions that combine other functions:

• Types for functions that operate over generic collections

• Many other idioms

• General point: When types can "be anything" but multiple things
need to be "the same type"

Fall 2011 3 CSE341: Programming Languages

fun compose (g,h) = fn x => g (h x)
(* compose : ('b -> 'c) * ('a -> 'b) -> ('a -> 'c) *)

val length : 'a list -> int
val map : ('a -> 'b) -> 'a list -> 'b list
val swap : ('a * 'b) -> ('b * 'a)

Generics in Java

• Java generics a bit clumsier syntactically and semantically, but
can express the same ideas
– Without closures, often need to use (one-method) objects
– See also lecture on closures in Java/C

• Simple example without higher-order functions:

Fall 2011 4 CSE341: Programming Languages

class Pair<T1,T2> {
 T1 x;
 T2 y;
 Pair(T1 _x, T2 _y){ x = _x; y = _y; }
 Pair<T2,T1> swap() {
 return new Pair<T2,T1>(y,x);
 }
 …
}

Subtyping is not good for this

• Using subtyping for containers is much more painful for clients
– Have to downcast items retrieved from containers
– Downcasting has run-time cost
– Downcasting can fail: no static check that container has the

type of data you think it does
– (Only gets more painful with higher-order functions like map)

Fall 2011 5 CSE341: Programming Languages

class LamePair {
 Object x;
 Object y;
 LamePair(Object _x, Object _y){ x=_x; y=_y; }
 LamePair swap() { return new LamePair(y,x); }
}

// error caught only at run-time:
String s = (String)(new LamePair("hi",4).y);

What is subtyping good for?

Some good uses for subtype polymorphism:

• Code that "needs a Foo" but fine to have "more than a Foo"
– Geometry on points works fine for colored points
– GUI widgets specialize the basic idea of "being on the

screen" and "responding to user actions"

• Related perspective: Writing code in terms of what it expects of
arguments (but more is fine)
– Static checking makes sure arguments have what is needed

Fall 2011 6 CSE341: Programming Languages

Awkward in ML

ML does not have subtyping, so this simply does not type-check:

Fall 2011 7 CSE341: Programming Languages

fun distToOrigin ({x=x,y=y} : {x:real,y:real}) =
 Math.sqrt(x*x + y*y)

val five = distToOrigin {x=3.0,y=4.0,color="red"}

Higher-order workaround

• Can write reusable code in ML a la subtyping if you plan ahead
and use generics in awkward ways

• See example in lec27.sml

Fall 2011 8 CSE341: Programming Languages

Wanting both

• Could a language have generics and subtyping?
– Sure!

• More interestingly, want to combine them

– "Any type T1 that is a subtype of T2"
– This is bounded polymorphism
– Lets you do things naturally you can't do with generics or

subtyping

Fall 2011 9 CSE341: Programming Languages

Example [also see Lec27.java]
• Only bounded polymorphism lets us use inCircle with a list of

ColorPt objects
– And callee can't put a Pt in pts or the result list!

Fall 2011 10 CSE341: Programming Languages

class Pt {
 …
 double distance(Pt p) { … }
}
class ColorPt extends Pt { … }

class Pt {
 static <T extends Pt> List<T> inCircle(List<T> pts,
 Pt center,
 double r) {
 List<T> result = new ArrayList<T>();
 for(T pt: pts)
 if(pt.distance(center) <= r)
 result.add(pt);
 return result;
}

One caveat

• For backward-compatibility and implementation reasons, in Java

there is always a way to use casts to get around the static
checking with generics
– With or without bounded polymorphism

• Oh well

Fall 2011 11 CSE341: Programming Languages

