
CSE341: Programming Languages

Lecture 26

Subtyping for OOP

Dan Grossman

Fall 2011

This lecture

How does subtyping for Java/C# relate to the subtyping in the last

lecture?

Many of the same principles but Java/C#:

– Use class and interface names for types

– Support static overloading instead of contravariant

arguments

Fall 2011 2 CSE341: Programming Languages

What we have learned

• A record subtype can have more fields than its supertype

• A mutable record field cannot have its type change via

subtyping

• An immutable record field can be covariant for subtyping (depth)

• Function subytping uses contravariant argument types and

covariant result types

Now can use this to understand how we could type-check OOP…

Fall 2011 3 CSE341: Programming Languages

An object is…

• Objects are basically records holding fields and methods

– Fields are mutable

– Methods are immutable functions that also have access to
this / self

• So we could design a type system using types very much like

our record types from last lecture

– Subtypes can have extra fields

– Subtypes can have extra methods

– Subtypes can have methods with contravariant arguments

and covariant result compared to same method in supertype

• Sound only because method "slots" are immutable!

Fall 2011 4 CSE341: Programming Languages

Java is more restrictive

Java's object types don't look like:

 {fields: x:real, y:real, …

 methods: distToOrigin : () -> real, … }

Instead:

• Reuse class names as types

– Type has everything implied by the class definition

• Add more types with interface definitions

• Have only the subtyping explicitly stated via extends and

implements

Cannot get "field missing" or "method missing" errors because this

approach allows a subset of the subtyping that would be sound

Fall 2011 5 CSE341: Programming Languages

In Java…

• A subclass can add fields but not remove them (width)

• A subclass can add methods but not remove them (width)

• A subclass can override a method with a covariant return type

– (Java didn't used to allow this)

– Depth on immutable slot + function subtyping

– But doesn't allow contravariant arguments (see later slides)

• A class can implement more methods than an interface requires

(width)

– Also allow covariant return types

Fall 2011 6 CSE341: Programming Languages

Example (constructors and public omitted)

Fall 2011 7 CSE341: Programming Languages

class Pt {
 double x, y;
 double distance(Pt z) { … }
 Pt shift(double dx, double dy) { … }
}
interface Colorable {
 Color getColor();
 void setColor(Color c);
}

class ColorPt extends Pt implements Colorable {

 Color color;

 Color getColor () { return this.color; }

 void setColor(Color c) { this.color = c; }

 ColorPt shift(double dx, double dy) {

 Pt p = super.shift();

 return new ColorPt(p.x,p.y,this.color);

 }

}

Example so far

• An instance of ColorPt is substitutable for any value of type Pt

or type Colorable

– Adds field color

– Gives shift a more specific return type

– Adds methods w.r.t. ColorPt and w.r.t. Colorable

• What about changing the types of fields or method arguments?

– Not possible in Java

– For fields: to stay sound

– For methods: because Java has static overloading instead

– In both cases, "it type-checks" but "it" actually adds new

fields/methods with the same name (kind of confusing)

Fall 2011 8 CSE341: Programming Languages

More example (again omitting constructors)

Fall 2011 9 CSE341: Programming Languages

class ColorPt extends Pt implements Colorable {
 Color color;
 Color getColor () { return this.color; }
 void setColor(Color c) { this.color = c; }
 ColorPt shift(double dx, double dy) { … }
}
class Color extends Object { String s; }
class FancyColor extends Color { double shade; }

class MyColorPt extends ColorPt {

 T1 color;

 T2 getColor () { … }

 void setColor(T3 c) { … }

}

• What does redeclaring a field or method mean?

• For each of T1, T2, and T3, which of Object, Color,

FancyColor can they be?

Field shadowing

• What we have learned: Mutable fields must have the same type

in subclass and superclass, so no "overriding" possible

– Changing to Object or FancyColor would be unsound

• Java: A field declared in the subclass can have the same name

as an inherited field, but it is a new, different field

– Field in subclass shadows

– Can access other field with super.color

– No dynamic dispatch: inherited methods use old field

• So: T1 can be any type, Object, Color, FancyColor, Pizza

– A different field with shadowing rules, not a subtyping issue
Fall 2011 10 CSE341: Programming Languages

class MyColorPt extends ColorPt {

 T1 color;

 …

}

Method overriding / overloading

• What we have learned: If we replace a method with one of a

different type, need contravariant arguments, covariant result

– So T2 could be Color or FancyColor (true in Java too)

– So T3 could be Color or Object (not FancyColor!)

• Java: A method declared with different argument types is a

different method with the same name

– So T3 can be any type

– If T3 is Color, then we are overriding, for any other type, we

are adding a new method

• Simply no syntax for overriding with contravariant args
Fall 2011 11 CSE341: Programming Languages

class MyColorPt extends ColorPt {

 T2 getColor () { … }

 void setColor(T3 c) { … }

}

Static overloading

• So a Java class can have multiple methods with the same name

– Called overloading

• Must revisit the key question in OOP:

What does e0.m(e1,…,en) mean?

• As before:

– Evaluate e0, …, en to v0, …, vn

– Look up class of v0 (dynamic dispatch)

• But now the class may have more than one m

– Java: Pick the "best" one using the static types of e1, …, en

• The (run-time) class of v1, …, vn is irrelevant

• "Best" is complicated, roughly "least amount of subtyping"

Fall 2011 12 CSE341: Programming Languages

Static overloading examples

Fall 2011 13 CSE341: Programming Languages

class Color extends Object { String s; }
class FancyColor extends Color { double shade; }

class MyClass {
 void m(Object x) { … } // A
 void m(Color x) { … } // B
 void m(FancyColor x) { … } // C
 void m(Color x, FancyColor y) { … } // D
 void m(FancyColor x, Color y) { … } // E
}
MyClass obj = new MyClass(…);
Color c1 = new Color(…);
FancyColor c2 = new FancyColor(…);
Color c3 = new FancyColor(…); // subtyping!
obj.m(c1); // B
obj.m(c2); // C
obj.m(c3); // B static overloading!
obj.m(c1,c2); // D
obj.m(c1,c3); // type error: no method matches
obj.m(c2,c2); // type error: no best match (tie)

So…

• Java's rules for subclassing and overriding are sound because

they allow less than they could based on record and function

subtyping

• Static overloading saves you the trouble of making up different

method names

– Often convenient, but the exact rules are complicated

– This is not multimethods

• So still have to code up double dispatch manually

• Multimethods look up method using class of all args

• Biggest unnecessary restriction in Java is having subtyping only

via subclasses and interfaces…

Fall 2011 14 CSE341: Programming Languages

Names vs. structure

• From a "method not understood" perspective, no reason we
couldn't make ThreeActPlay <: StringPair

• Silly example, but key idea behind duck-typing: Is the type of an

object "what it can do" or "its place in the class hierarchy"

– Interfaces the former, but require explicit implements clause

Fall 2011 15 CSE341: Programming Languages

class StringPair {
 String first;
 String second;
 void setFirst(String x){ … }
 …
}
class ThreeActPlay {
 String first;
 String second;
 String third;
 void setFirst(String x){ … }
 …
}

Classes vs. Types

• A class defines an object's behavior

– Subclassing inherits behavior and changes it via extension and

overriding

• A type describes an object's field and method types

– A subtype is substitutable in terms of its field/method types

• These are separate concepts! Try to use the terms correctly!

– Java/C# confuse them by requiring subclasses to be subtypes

– A class name is both a class and a type

– This confusion is convenient in practice

Fall 2011 16 CSE341: Programming Languages

What if?

• If subclasses did not have to be subtypes, then a ThreeDPoint

could override distance to take a ThreeDPoint argument

– Not allowed via subtyping (arguments are contravariant)

– But only works if other methods in superclass do not assume

the type

– (Such a method allowed in Java via overloading)

• If subtypes did not have to be subclasses, then could have a
Launchable type for any class with a method void launch()

– This is what interfaces are for

– Classes still have to explicitly "opt-in" to implementing
Launchable

– Allows more subtyping, which allows more code reuse, but

means you have to keep track of when you are launching a
Missile versus a MarketingCampaign

Fall 2011 17 CSE341: Programming Languages

Abstract methods again

• Abstract methods are about the type of the class name

– All values of the type have the method

– So subclasses with instances must implement the method

• Abstract methods have nothing to do with defining behavior

– This is why Ruby doesn't have them

Fall 2011 18 CSE341: Programming Languages

self/this is special

• Recall our Racket encoding of OOP-style

– "Objects" have a list of fields and a list of functions that take
self as an explicit extra argument

• So if self/this is a function argument, is it contravariant?

– No, it's covariant: a method in a subclass can use fields and

methods only available in the subclass: essential for OOP

– Sound because calls always use the "whole object" for self

– This is why coding up your own objects manually works

much less well in a statically typed languages

Fall 2011 19 CSE341: Programming Languages

class A {
 int m(){ return 0; }
}
class B extends A {
 int x;
 int m(){ return x; }
}

