CSE341: Programming Languages

Lecture 25
Subtyping for Records and Functions

Dan Grossman
Fall 2011



Last major course topic: more types

« SML and Java have static type systems to prevent some errors
— ML: No such thing as a "treated number as function" error
— Java: No such thing as a "message missing" error
— Etc.

« What should the type of an object be?
— Theory:
« What fields it has (and what types of things they hold)
« What methods it has (and argument/result types)

— With Ruby style getters/setters, no need to treat
fields separately

— Common practice:
 Use the names of classes and interfaces instead

— Has plusses and minuses; see next lecture
Fall 2011 CSE341: Programming Languages



Being more flexible

 ML's type system would be much more painful (reject safe
programs you want to write) without parametric polymorphism

— Also known as generics

— Example: A separate length function for int 1list and
string list

« Java's type system would be much more painful (reject safe
programs you want to write) without subtype polymorphism

— Also known as subtyping

— Example: Couldn't pass an instance of a subtype when
expecting an instance of a supertype

— (Yes, Java also has generics as a separate concept)

Fall 2011 CSE341: Programming Languages



So which Is better?

« Generics and subtyping are best for different things
— And you can combine them in interesting ways
— But that's for next lecture because...

* First we need to learn how subtyping works!

— Classes, interfaces, objects, methods, etc. will get in the way
at first (we'll get there)

— So start with just subtyping for records with mutable fields
— We will make up our own syntax
« ML has records, but no subtyping or field-mutation
« Racket and Ruby have no type system
« Java uses class/interface names and rarely fits on a slide

Fall 2011 CSE341: Programming Languages



Records (half like ML, half like Java)

Record expression (field names and contents):

{fl=el, £f2=e2, .., fn=en} Evaluate ei, make a record

Record field access:
e. f Evaluate e to record v with an £ field, get contents

Record field update
el . f = e2 Evaluate el to a record v1 and e2 to a value v2;

Change v1's £ field (which must exist) to v2;
Return v2

Fall 2011 CSE341: Programming Languages 5



A Basic Type System

Record types: What fields a record has and type of contents
{£1:t1, £2:t2, .., £n:tn}
Type-checking expressions:

 Ifel hastype t1, ..., en has type tn,
then {£f1=el, .., fn=en} hastype {£f1:tl, .., £fn:tn}

 |If e has arecord type containing £ : t,
thene.£f hastype t

* If el has arecord type containing £ : t and e2 has type t,
thenel.f = e2 hastype t

Fall 2011 CSE341: Programming Languages



This Is safe

These evaluation rules and typing rules prevent ever trying to
access a field of a record that does not exist

Example program that type-checks (in a made-up language):

fun distToOrigin (p:{x:real,y:real}) =
Math.sqrt(p.x*p.x + p.y*p.vVy)

val pythag : {x:real,y:real} = {x=3.0, y=4.0}
val five : real = distToOrigin (pythag)

Fall 2011 CSE341: Programming Languages



Motivating subtyping

But according to our typing rules, this program does not type-check
— It does nothing wrong and seems worth supporting

fun distToOrigin (p:{x:real,y:real}) =
Math.sqgrt(p.x*p.x + p.y*p.Vy)

val ¢ : {x:real,y:real,color:string}
{x=3.0, y=4.0, color="green"}

val five : real = distToOrigin|(c)

Fall 2011 CSE341: Programming Languages



A good idea: allow extra fields

Natural idea: If an expression has type
{£1:t1, £2:t2, .., f£n:tn}
Then it can also have a type missing some of the fields

This is what we need to type-check these function calls:

fun distToOrigin (p:{x:real,y:real}) = ..

fun makePurple (p:{color:string}) = ..

val ¢ :{x:real,y:real,color:string} =
{x=3.0, y=4.0, color="green"}

val distToOrigin(c)

val = makePurple (c)

Fall 2011 CSE341: Programming Languages



Keeping subtyping separate

A programming language already has a lot of typing rules and we
don't want to change them

— Example: The type of an actual function argument must
equal the type of the function parameter

We can do this by adding "just two things to our language”
— Subtyping: Write t1 <: t2 for t1 is a subtype of t2

— One new typing rule that uses subtyping:
If e has type t1 and t1 <: t2,
then e (also) has type t2

So now we just have to define t1 <: t2

Fall 2011 CSE341: Programming Languages 10



Subtyping Is not a matter of opinion

* Misconception: If we are making a new language, we can have
whatever typing and subtyping rules we want

« Well, not if you want to prevent what you claim to prevent
— Here: No accessing record fields that don't exist

» Our typing rules were sound before we added subtyping
— S0 we better keep it that way

» Principle of substitutability: If t1 <: t2, then any value of type
t1 must be able to be used in every way a t2 can be

— Here: It needs all the same fields

Fall 2011 CSE341: Programming Languages 11



Four good rules

For our record types, these rules all meet the substitutability test:

1. "Width" subtyping: A supertype can have a subset of fields with
the same types

2. "Permutation" subtyping: A supertype can have the same set of
fields with the same types in a different order

3. Transitivity: If £t1 <: t2and t2 <: t3,thentl <: t3
4. Reflexivity: Every type is a subtype of itself

(4) may seem unnecessary, but it composes well with other rules in
a full language and "can't hurt"

Fall 2011 CSE341: Programming Languages 12



But this still Is not allowed

[Warning: I'm tricking you into doing a bad thing ©]
Subtyping rules so far let us drop fields but not change their types

Example: A circle has a center field holding another record

fun circleY (c:{center:{x:real,y:real}, r:real}) =
c.center.y

val sphere: {center:{x:real,y:real,z:real}, r:real})
={center={x=3.0,y=4.0,z=0.0}, r=1.0}

val = circleY (sphere)

For this to type-check, we need:
{center: {x:real,y:real,z:real}, r:real}
<:
{center: {x:real,y:real}, r:real}
Fall 2011 CSE341: Programming Languages 13



Don't have this subtyping — could we?

{center: {x:real,y:real,z:real}, r:real}
<:
{center: {x:real,y:real}, r:real}

 No way to get this yet: we can drop center, drop r, or permute
order, but we can't "reach into a field type" to do subtyping

« So why not add another subtyping rule... "Depth" subtyping:
If ta <: tb, then {£f1:t1, .., £:ta, .., fn:tn} <:
{£1:t1, .., £:tb, .., fn:tn}

* Depth subtyping (along with width on the field's type) allows our
example to type-check
— Unfortunately, it also allows some things it should not... ®

Fall 2011 CSE341: Programming Languages 14



Mutation strikes again

If ta <: tb,
then {£f1:t1, .., f£:ta, .., fn:tn}
<: {£f1:t1, .., £:tb, .., £fn:tn}

fun setToOrigin (c: {center: {x:real,y:real}, r:real})=
c.center = {x=0.0, y=0.0}

val sphere: {center:{x:real,y:real,z:real}, r:real})
={center={x=3.0,y=4.0,z=0.0}, r=1.0}

val = setToOrigin (sphere)

val = sphere.center.z (* kaboom! (no z field) *)

Fall 2011 CSE341: Programming Languages 15



Moral of the story

« |In alanguage with records/objects with getters and setters,
depth subtyping is unsound

— Subtyping cannot change the type of fields

« |If fields are immutable, then depth subtyping is sound!

— So this is the Nth time in the course we have seen a benefit
of outlawing mutation

— Choose two of three: setters, depth subtyping, soundness

 Remember: subtyping is not a matter of opinion

Fall 2011 CSE341: Programming Languages

16



Picking on Java (and C#)

Arrays should work just like records in terms of depth subtyping
— ButinJava, if t1 <: t2,then tl[] <: t2]]

— So this code type-checks, surprisingly

class Point { .. }
class ColorPoint extends Point { .. }

void ml (Point[] pt arr) {
pt arr[0] = new Point(3,4);

}

String m2 (int x) ({
ColorPoint[] cpt arr = new ColorPoint[x];
for(int i1i=0; i < x; i++)

cpt arr[i] = new ColorPoint(0,0,"green") ;

ml (cpt _arr); // !
return cpt arr[0] .color; // !

}

Fall 2011 CSE341: Programming Languages

17



Why did they do this?

« More flexible type system allows more programs but prevents fewer
errors

— Seemed especially important before Java/C# had generics

« Good news, despite this "inappropriate" depth subtyping
— e.color will never fail due to there being no color field
— Array reads el [e2] always return a (subtype of) tifelisa t[]

 Bad news, to get the good news given "inappropriate"” subtyping
- el[e2]=e3 canfail evenif el has type t[] and e3 has type t

— Array stores check the run-time class of el's elements and do
not allow storing a supertype

— No type-system help to avoid such bugs / performance cost

Fall 2011 CSE341: Programming Languages 18



So what happens

void ml (Point[] pt arr) {

pt arr[0] = new Point(3,4); // can throw
}
String m2 (int x) {

ColorPoint[] cpt arr = new ColorPoint[x];

ml (cpt arr); // "inappropriate" depth subtyping
ColorPoint c = cpt arr[0]; // fine, cpt arr

// will always hold (subtypes of) ColorPoints
return c.color; // fine, a ColorPoint has a color

e Causes code inml to throw an ArrayStoreException
— It is awkward at best to blame this code

— Benefit is run-time checks occur only on array stores, not on
field accesses like c.color

Fall 2011 CSE341: Programming Languages 19



null

« Array stores probably the most surprising choice for flexibility over
static checking

 Butnull is the most common one in practice
— null is not an object; it has no fields or methods
— But Java and C# let it have any object type (backwards, huh?!)

— S0, in fact, we do not have the static guarantee that evaluating
eine.fore.m(..) produces an object that has an £ orm

— The "or null" caveat leads to run-time checks and errors, as
you have surely noticed

« Sometimes null is very convenient (like ML's option types)
— But having "can't be null" types in the language would be nice

Fall 2011 CSE341: Programming Languages 20



Now functions

« Already know a caller can use subtyping for arguments passed
— Or on the result

« More interesting: When is one function type a subtype of another?

— Important for higher-order functions: If a function expects an
argument of type t1->t2, can you pass a t3->t4 instead?

— Important for understanding methods

* An object type is a lot like a record type where "method
positions" are immutable and have function types

« Flesh out this connection next lecture, using our
understanding of function subtyping

Fall 2011 CSE341: Programming Languages 21



Example

fun distMoved (f : {x:real,y:real}->{x:real,y:real},
p : {x:real,y:real}) =
let val p2 : {x:real,y:real} = f p
val dx : real = p2.x - p.x
val dy : real = p2.y - p.y
in Math.sqgrt (dx*dx + dy*dy) end

fun flip p = {x = ~p.x, y=~p.YV}
val d = distMoved (flip, {x=3.0, y=4.0})

No subtyping here yet:
— flip has exactly the type distMoved expects for £
— Can pass in a record with extra fields for p, but that's old news

Fall 2011 CSE341: Programming Languages 22



Return-type subtyping

fun distMoved (f : {x:real,y:real}->{x:real,y:real},
p : {x:real,y:real}) =
let val p2 : {x:real,y:real} = f p
val dx : real = p2.x - p.x
val dy : real = p2.y - p.y
in Math.sqgrt (dx*dx + dy*dy) end

fun flipGreen p = {x = ~p.x, y=~p.y, color='green'"}
val d = distMoved (flipGreen, {x=3.0, y=4.0})

Return type of £1ipGreen is {x:real,y:real,color:string},
but distMoved expects a return type of {x:real,y:real}

Nothing goes wrong: If ta <: tb,thent -> ta <: t -> tb
— A function can return "more than it needs to"
— Jargon: "Return types are covariant"

Fall 2011 CSE341: Programming Languages 23



This Is wrong

fun distMoved (f : {x:real,y:real}->{x:real,y:real},
p : {x:real,y:real}) =
let val p2 : {x:real,y:real} = f p
val dx : real = p2.x - p.x
val dy : real = p2.y - p.y
in Math.sqgrt (dx*dx + dy*dy) end

fun flipIfGreen p = if p.color = "green" (*kaboom! *)
then {x = ~p.x, y=~p.YVv}

else {x = p.x, y=p.y}
val d = distMoved (flipIfGreen, {x=3.0, y=4.0})

 Argument type of £1ipIfGreen is

{x:real,y:real,color:string}, butitis called with a
{x:real,y:real}

e Unsound! ta <: tbdoesNOTmeanta -> t <: tb -> t

Fall 2011 CSE341: Programming Languages 24



The other way works!

fun distMoved (f : {x:real,y:real}->{x:real,y:real},
p : {x:real,y:real}) =
let val p2 : {x:real,y:real} = f p
val dx : real = p2.x - p.x
val dy : real = p2.y - p.y
in Math.sqgrt (dx*dx + dy*dy) end

fun flipX Y0 p = {x = ~p.x, y=0.0}
val d = distMoved(flipX Y0, {x=3.0, y=4.0})

« Argument type of £1ipX YO is {x:real} butitis called with a
{x:real,y:real}, which is fine

e If tb <: ta,thenta -> t <: tb -> t

— A function can assume less than it needs to of arguments
— Jargon: "Argument types are contravariant"

Fall 2011 CSE341: Programming Languages 25



Can do both

fun distMoved (f : {x:real,y:real}->{x:real,y:real},
p : {x:real,y:real}) =
let val p2 : {x:real,y:real} = f p
val dx : real = p2.x - p.x
val dy : real = p2.y - p.y
in Math.sqgrt (dx*dx + dy*dy) end

fun flipXMakeGreenp = {x=~p.x, y=0.0, color="green"}
val d = distMoved (flipXMakeGreen, {x=3.0, y=4.0})

« flipXMakeGreen has type
{x:real} -> {x:real,y:real,color:string}
* Fine to pass a function of such a type as function of type
{x:real,y:real} -> {x:real,y:real}
« Ift3 <: tlandt2 <: t4,then tl->t2 <: t3->t4

Fall 2011 CSE341: Programming Languages 26



This time with enthusiasm

e Ift3 <: tlandt2 <: t4,thentl->t2 <: t3->t4

Function subtyping contravariant in argument(s) and
covariant in results

» Also essential for understanding subtyping and methods in OOP

« The most unintuitive concept in this course

Fall 2011

Smart people often forget and convince themselves that
covariant arguments are okay

These smart people are always mistaken
At times, you or your boss or your friend may do this

Remember: A guy with a PhD in PL jumped out and down
Insisting that function/method subtyping is always
contravariant in its argument -- covariant is unsound

CSE341: Programming Languages 27



