
CSE341: Programming Languages

Lecture 23

OO vs. Functional Decomposition;

Adding Operations & Variants;

Double-Dispatch

Dan Grossman

Fall 2011

Breaking things down

• In functional (and procedural) programming, break programs

down into functions that perform some operation

• In object-oriented programming, break programs down into

classes that give behavior to some kind of data

This lecture:

– These two forms of decomposition are so exactly opposite

that they are two ways of looking at the same “matrix”

– Which form is “better” is somewhat personal taste, but also

depends on how you expect to change/extend software

– For some operations over two (multiple) arguments,

functions and pattern-matching are straightforward, but with

OOP we can do it with double dispatch (multiple dispatch)

Fall 2011 2 CSE341: Programming Languages

The expression example

Well-known and compelling example of a common pattern:

– Expressions for a small language

– Different variants of expressions: ints, additions, negations, …

– Different operations to perform: eval, toString, hasZero, …

Leads to a matrix (2D-grid) of variants and operations

– Implementation will involve deciding what “should happen” for

each entry in the grid regardless of the PL

Fall 2011 3 CSE341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

Standard approach in ML

• Define a datatype, with one constructor for each variant

– (No need to indicate datatypes if dynamically typed)

• Define a function for each operation

• So “fill out the grid” via one function per column with one case-

expression branch for each grid position

– Can use a wildcard pattern if there is a default for multiple

entries in a column

See lec23_stage1.sml
Fall 2011 4 CSE341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

Standard approach in OOP

• Define a class, with one abstract method for each operation

– (No need to indicate abstract methods if dynamically typed)

• Define a subclass for each variant

• So “fill out the grid” via one class per row with one method

implementation for each grid position

– Can use a method in the superclass if there is a default for

multiple entries in a column

See lec23_stage1.rb and lec23_stage1.java
Fall 2011 5 CSE341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

A big CSE341 punchline

• FP and OOP often doing the same thing in exact opposite way

– Organize the program “by rows” or “by columns”

• Which is “most natural” may depend on what you are doing (e.g., an

interpreter vs. a GUI) or personal taste

• Code layout is important, but there’s no perfect way since software

has many dimensions of structure

– Tools, IDEs can help with multiple “views” (e.g., rows / columns)

Fall 2011 6 CSE341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

Now for stage 2: FP

• For implementing our grid so far, SML / Racket style usually by

column and Ruby / Java style usually by row

• But beyond just style, this decision affects what (unexpected?)

software extensions are easy and/or do not change old code

• Functions:

– Easy to add a new operation, e.g., noNegConstants

– Adding a new variant, e.g., Mult requires modifying old

functions, but ML type-checker gives a to-do list if we

avoided wildcard patterns in Stage 1

Fall 2011 7 CSE341: Programming Languages

eval toString hasZero noNegConstants

Int

Add

Negate

Mult

Now for stage 2: OOP

• For implementing our grid so far, SML / Racket style usually by

column and Ruby / Java style usually by row

• But beyond just style, this decision affects what (unexpected?)

software extensions are easy and/or do not change old code

• Objects:

– Easy to add a new variant, e.g., Mult

– Adding a new operation, e.g., noNegConstants requires

modifying old classes, but Java type-checker gives a to-do

list if we avoided default methods in Stage 1
Fall 2011 8 CSE341: Programming Languages

eval toString hasZero noNegConstants

Int

Add

Negate

Mult

The other way is possible

• Functions allow new operations and objects allow new variants

without modifying existing code even if they didn’t plan for it

– The programming style “just works that way”

• Functions can support new variants somewhat awkwardly “if

they plan ahead”

– See datatype 'a ext_exp and eval_ext at bottom of

lec23.sml if interested

• Objects can support new operations somewhat awkwardly “if

they plan ahead”

– The popular Visitor Pattern (not shown here), which uses the

double-dispatch pattern (used next for another purpose)

Fall 2011 9 CSE341: Programming Languages

Thoughts on Extensibility

• Making software extensible is valuable and hard

– If you know you want new operations, use FP

– If you know you want new variants, use OOP

– If both? Languages like Scala try; it’s a hard problem

– Reality: The future is often hard to predict!

• Extensibility is a double-edged sword

– Code more reusable without being changed later

– But makes original code more difficult to reason about locally

or change later (could break extensions)

– Often language mechanisms to make code less extensible
(ML modules hide datatypes; Java’s final prevents

subclassing/overriding)

Fall 2011 10 CSE341: Programming Languages

Stage 3: Binary operations

• Situation is more complicated if an operation is defined over

multiple arguments that can have different variants

– Can arise in original program or after an extension

• Our example:

– Include variants String and Rational

– (Re)define Add to work on any pair of Int, String, Rational in

either order

• String-concatenation if >= 1 arg is a String, else math

– (Just to keep example smaller, Negate and Mult still work

only on Int, with a run-time error for a String or Rational)

Fall 2011 11 CSE341: Programming Languages

Binary operation in SML

Add works differently for most combinations of Int, String, Rational

– Run-time error for any other kinds of expression

Natural approach: pattern-match on the pair of values

– For commutative possibilities, can re-call with (v2,v1)

Fall 2011 12 CSE341: Programming Languages

fun add_values (v1,v2) =

 case (v1,v2) of

 (Int i, Int j) => Int (i+j)

 | (Int i, String s) => String (Int.toString i ^ s)

 | (Int i, Rational(j,k)) => Rational (i*k+j,k)

 | (Rational _, Int _) => add_values (v2,v1)

 | … (* 5 more cases (3^2 total): see lec23.sml *)

fun eval e =

 case e of

 …

 | Add(e1,e2) => add_values (eval e1, eval e2)

Binary operation in OOP: first try
• Normal dynamic dispatch gives us separate methods for the

variant of the first argument (the receiver)

– We could then abandon OOP style and use Racket-style

type tests for branching on the 2nd argument’s variant

– 9 cases total: 3 in Int’s add_values, 3 in String’s

add_values, 3 in Rational’s add_values

Fall 2011 13 CSE341: Programming Languages

class Int
 …
 def add_values other
 if other.is_a? Int
 …
 elsif other.is_a? Rational
 …
 else …
 end
end
class Add
 def eval ; e1.eval.add_values e2.eval ; end
end

A more OO style

• The FP approach had 3*3 case-expression branches

• Our half-OOP approach had 3 methods with 3 branches

• A full-OOP would have 9 methods, with dynamic dispatch picking

the right one

– There are languages that have such multimethods, i.e.,

method calls that use dynamic dispatch on > 1 argument

– Ruby & Java (& C++ & C# & …) have no such feature

– But we can code it up ourselves in an OOP way using the

double-dispatch idiom (next slide)

• (If we had three arguments, could use triple dispatch, etc.,

but double-dispatch is already fairly unwieldy)

Fall 2011 14 CSE341: Programming Languages

The double-dispatch “trick”

• If Int, String, and Rational all define all of addInt,

addString, and addRational, that’s 9 cases

– For example, String’s addInt is for additions of the form “i +

s” where i is an int and s is a string (i.e., self is “on the right”)

• Add’s eval method calls e1.eval.add_values e2.eval,

which dispatches to add_values in Int, String, or Rational

– Int’s add_values: other.addInt self

– String’s add_values: other.addString self

– Rational add_values: other.addRational self

So add_values performs “the 2nd dispatch” to the correct case!

See lec23.rb

Fall 2011 15 CSE341: Programming Languages

Works in Java too

• In a statically typed language, double-dispatch works fine

– Just need all the dispatch methods in the type

See lec23.java

Fall 2011 16 CSE341: Programming Languages

abstract class Value extneds Exp {

 abstract Value add_values(Value other);

 abstract Value addInt(Int other);

abstract Value addString(Strng other);

abstract Value addRational(Rational other);

}

class Int extends Value { … }

class Strng extends Value { … }

class Rational extends Value { … }

Summary

• “The 2-D grid” is a fundamental truth about software, essential to

understanding how OOP and procedural decomposition relate

• Software extensibility is easy in some ways and hard in others

– Which ways are which depend on how code is structured

• Double-dispatch is how you “stay OOP” in a language without

multimethods for operations that take multiple arguments of

different variants

– Is “staying OOP” here worth it?

Fall 2011 17 CSE341: Programming Languages

