CSE341: Programming Languages

Lecture 22
Multiple Inheritance, Interfaces, Mixins

Dan Grossman
Fall 2011



What next?

Have used classes for OOP's essence: inheritance, overriding,
dynamic dispatch

Now, what if we want to have more than just 1 superclass

« Multiple inheritance: allow > 1 superclasses
— Useful but has some problems (see C++)

« Java-style interfaces: allow > 1 types

— Mostly irrelevant in a dynamically typed language, but fewer
problems

* Ruby-style mixins: 1 superclass; > 1 method providers

— Often a fine substitute for multiple inheritance and has fewer
problems

Fall 2011 CSE341: Programming Languages



Multiple Inheritance

« If inheritance and overriding are so useful, why limit ourselves to one
superclass?

— Because the semantics is often awkward (next couple slides)
— Because it makes static type-checking harder (not discussed)
— Because it makes efficient implementation harder (not discussed)

* Isituseful? Sure!
— Example: Make a ColorPt3D by inheriting from Pt3D and
ColorPt (or maybe just from Color)
— Example: Make a StudentAthlete by inheriting from Student
and Athlete

— With single inheritance, end up copying code or using non-OOP-
style helper methods

Fall 2011 CSE341: Programming Languages 3



Trees, dags, and diamonds

* Note: The phrases subclass, superclass can be ambiguous
— There are immediate subclasses, superclasses
— And there are transitive subclasses, superclasses

A

« Single inheritance: the class hierarchy is a tree /é;\
— Nodes are classes B [l)
E

X
« Multiple inheritance: the class hierarchy no longer a tree /\VV
— Cycles still disallowed (a directed-acyclic graph) v |
Z

— If multiple paths show that X is a (transitive) superclass\/
Y

— Parent is immediate superclass
— Any number of children allowed

of Y, then we have diamonds

Fall 2011 CSE341: Programming Languages 4



What could go wrong? X

 If V and Z both define a method m, \/Z
what does Y inherit? What does super mean? v
— Directed resends useful (e.g., Z: : super)

« What if X defines a method m that Z but not V overrides?

— Can handle like previous case, but sometimes undesirable
(e.g., ColorPt3D wants Pt3D's overrides to "win")

» |If X defines fields, should Y have one copy of them (£) or two
(Vv::£f and z: : £)?

— Turns out each behavior is sometimes desirable (next slides)
— So C++ has (at least) two forms of inheritance

Fall 2011 CSE341: Programming Languages 5



3DColorPoints

If Ruby had multiple inheritance, we would want ColorPt3D to
Inherit methods that share one @x and one Ry

class Pt
attr accessor :x, !y

end
class ColorPt < Pt
att:_accessor :color

end
class Pt3D < Pt
attr accessor :z
.. # override methods like distance?
end
class ColorPt3D < Pt3D, ColorPt # not Ruby!
end

Fall 2011 CSE341: Programming Languages



ArtistCowboys

This code has Person define a pocket for subclasses to use, but
an ArtistCowboy wants two pockets, one for each draw method

class Person
attr accessor :pocket

end
class Artist < Person # pocket for brush objects
def draw # access pocket

end
class Cowboy < Person # pocket for gun objects
def draw # access pocket

end

class ArtistCowboy < Artist, Cowboy # not Ruby!
end

Fall 2011 CSE341: Programming Languages 7



Java interfaces

Recall (?), Java lets us define interfaces that classes explicitly
Implement

interface Example ({
void ml (int x, int y);
Object m2 (Example x, String y)

}

class A implements Example {
public void ml(int x, int y) {..}
public Object m2 (Example e, String s) {..}
}
class B implements Example {
public void ml (int pizza, int beer) {..}
public Object m2 (Example e, String s) {..}

}

Fall 2011 CSE341: Programming Languages



What is an interface?

interface Example {

void ml (int x, int y);

Object m2 (Example x, String y)
}

An interface is a type!

— Any implementer (including subclasses) is a subtype of it

— Can use an interface name wherever a type appears

— (In Java, classes are also types in addition to being classes)
An implementer type-checks if it defines the methods as required

— Parameter names irrelevant to type-checking; it's a bit strange
that Java requires them in interface definitions

A user of type Example can objects with that type have the
methods promised

— l.e., sending messages with appropriate arguments type-checks

Fall 2011 CSE341: Programming Languages 9



Multiple interfaces

« Java classes can implement any number of interfaces

« Because interfaces provide no methods or fields, no questions of
method/field duplication arise

— No problem if two interfaces both require of implementers and
promise to clients the same method

« Such interfaces aren't much use in a dynamically typed language
— We don't type-check implementers
— We already allow clients to send any message

— Presumably these types would change the meaning of is_a?,
but we can just use instance methods to find out what
methods an object has

Fall 2011 CSE341: Programming Languages 10



Why no interfaces in C++?

If you have multiple inheritance and abstract methods (called pure
virtual methods in C++), there is no need for interfaces

Abstract method: A method declared but not defined in a class.
All instances of the (sub)class must have a definition

Abstract class: Has one or more abstract methods; so disallow
creating instances of this exact class

— Have to subclass and implement all the abstract methods to
create instances

Little point to abstract methods in a dynamically typed language

In C++, instead of an interface, make a class with all abstract
methods and inherit from it — same effect on type-checking

Fall 2011 CSE341: Programming Languages 11



MIXINS

« A mixin is (just) a collection of methods
— Less than a class: no fields, constructors, instances, etc.
— More than an interface: methods have bodies

« Languages with mixins (e.g., Ruby modules) typically allow a
class to have one superclass but any number of mixins

« Semantics: Including a mixin makes its methods part of the class

— Extending or overriding in the order mixins are included in the
class definition

— More powerful than helper methods because mixin methods
can access methods (and instance variables) on self not

defined in the mixin

Fall 2011 CSE341: Programming Languages 12



Example

module Doubler
def double
self + self # assume included in classes w/ +
end
end
class String
include Doubler
end
class AnotherPt
attr_accessor :x, 'y
include Doubler
def + other
ans = AnotherPt.new
ans.x = self.x + other.x
ans.y = self.y + other.y
ans
end

Fall 2011 CSE341: Programming Languages 13



Lookup rules

Mixins change our lookup rules slightly:

* When looking for receiver obj0's method m, look in ob3j0's class,

then mixins that class includes (later includes shadow), then
obj0's superlcass, then the superclass' mixins, etc.

 As for instance variables, the mixin methods are included in the
same object

— So usually bad style for mixin methods to use instance
variables since a name clash would be like our CowboyArtist

pocket problem (but sometimes unavoidable?)

Fall 2011 CSE341: Programming Languages 14



The two big ones

The two most popular/useful mixins in Ruby:
 Comparable: Defines <, >, ==, I=, >= <=In terms of <=>

 Enumerable: Defines many iterators (e.g., map, find) in terms of
each

Great examples of using mixins:

— Classes including them get a bunch of methods for just a
little work

— Classes do not "waste" their "one superclass" for this
— Do not need the complexity of multiple inheritance

« See lec22.rb for some example uses

Fall 2011 CSE341: Programming Languages 15



Replacement for multiple inheritance?

* A mixin probably works well for ColorPt3D:
— Color a reasonable mixin except for using an instance variable

module Color
att;_accessor :color
end

* A mixin works awkwardly-at-best for ArtistCowboy:
— Natural for Artist and Cowboy t0 be Person subclasses

— Could move methods of one to a mixin, but it is odd style and
still doesn't get you two pockets

module ArtistM ..

class Artist < Person
include ArtistM

class ArtistCowboy < Cowboy
include ArtistM

Fall 2011 CSE341: Programming Languages 16



