
CSE341: Programming Languages

Lecture 16
Macros

Dan Grossman
Fall 2011

This lecture

• What are macros

• Why are macros difficult to use sensibly

• Using Racket’s macro system
– Defining macros
– Watching out for evaluation order and (re)-evaluation
– Why hygiene makes Racket’s macros much easier to use

sensibly

• When (not) to use macros

Fall 2011 2 CSE341: Programming Languages

What is a macro

• A macro describes how to transform some new syntax into
different syntax in the source language

• A macro is one way to implement syntactic sugar
– “Replace any syntax of the form e1 andalso e2 with
if e1 then e2 else false”

• A macro system is a language (or part of a larger language) for
defining macros

• Macro expansion is the process of rewriting the syntax to
eliminate macro uses
– Before a program is run (or even compiled)

Fall 2011 3 CSE341: Programming Languages

Tokenization

First question for a macro system: How does it tokenize?

• Macro systems generally work at the level of tokens not
sequences of characters
– So must know how programming language tokenizes text

• Example: “replace all occurrences of car with hd”

– Would not rewrite (+ cart foo) to (+ hdt foo)
– Would not rewrite car-door to hd-door

• But would in C where car-door is subtraction

Fall 2011 4 CSE341: Programming Languages

Parenthesization
Second question for a macro system: How does associativity work?

C/C++ basic example:

Probably not what you wanted:
 means not

So C macro writers use lots of parentheses, which is fine:

Racket won’t have this problem:
– Macro use: (macro-name …)
– After expansion: (something else in same parens)

 Fall 2011 5 CSE341: Programming Languages

#define ADD(x,y) x+y

ADD(1,2/3)*4 1 + 2 / 3 * 4 (1 + 2 / 3) * 4

#define ADD(x,y) ((x)+(y))

Local bindings

Third question for a macro system: Can variables shadow macros?

Suppose macros also apply to variable bindings. Then:

Would become:

This is why C/C++ convention is all-caps macros and non-all-caps
for everything else

Racket gets this and other scope gotchas “right”

Fall 2011 6 CSE341: Programming Languages

(let ([hd 0][car 1]) hd) ; 0
(let* ([hd 0][car 1]) hd) ; 0

(let ([car 0][car 1]) car) ; error
(let* ([car 0][car 1]) car) ; 1

Example Racket macro definitions

Two simple macros

Fall 2011 7 CSE341: Programming Languages

(define-syntax my-if ; macro name
 (syntax-rules (then else) ; other keywords
 [(my-if e1 then e2 else e3) ; macro use
 (if e1 e2 e3)])) ; form of expansion

(define-syntax comment-out ; macro name
 (syntax-rules () ; other keywords
 [(comment-out ignore instead) ; macro use
 instead])) ; form of expansion

If the form of the use matches, do the corresponding expansion
– In these examples, list of possible use forms has length 1
– Else syntax error

Example uses

Fall 2011 8 CSE341: Programming Languages

(my-if x then y else z) ; (if x y z)
(my-if x then y then z) ; syntax error
(my-if x then (begin (print "hi") 34) then 15)

(comment-out (begin (print "hi") 34) 15)
(comment-out (car null) #f)

It’s like we added keywords to our language
– Other keywords only keywords in uses of that macro
– Syntax error if keywords misused
– Rewriting (“expansion”) happens before execution

Revisiting delay and force
Recall our definition of promises from last lecture

– Should we use a macro instead to avoid clients’ explicit thunk?

Fall 2011 9 CSE341: Programming Languages

(define (my-delay th)
 (mcons #f th))

(define (my-force p)
 (if (mcar p)
 (mcdr p)
 (begin (set-mcar! p #t)
 (set-mcdr! p ((mcdr p)))
 (mcdr p))))

(define (f p)
 (… (my-force p) …))

(f (my-delay (lambda () e)))

A delay macro

• A macro can put an expression under a thunk
– Delays evaluation without explicit thunk
– Cannot implement this with a function

• Now client then should not use a thunk (that would double-thunk)
– Racket’s pre-defined delay is a similar macro

Fall 2011 10 CSE341: Programming Languages

(define-syntax my-delay
 (syntax-rules ()
 [(my-delay e)
 (mcons #f (lambda() e))]))

(f (my-delay e))

What about a force macro?

We could define my-force with a macro too
– Good macro style would be to evaluate the argument exactly

once (use x below, not multiple evaluations of e)
– Which shows it is bad style to use a macro at all here!
– Don’t use macros when functions do what you want

Fall 2011 11 CSE341: Programming Languages

(define-syntax my-force
 (syntax-rules ()
 [(my-force e)
 (let([x e])
 (if (mcar x)
 (mcdr x)
 (begin (set-mcar! x #t)
 (set-mcdr! p ((mcdr p)))
 (mcdr p))))]))

Another bad macro

Any function that doubles its argument is fine for clients

– These are equivalent to each other

So macros for doubling are bad style but instructive examples:

– These are not equivalent to each other. Consider:

Fall 2011 12 CSE341: Programming Languages

(define (dbl x) (+ x x))
(define (dbl x) (* 2 x))

(define-syntax dbl (syntax-rules()[(dbl x)(+ x x)]))
(define-syntax dbl (syntax-rules()[(dbl x)(* 2 x)]))

(dbl (begin (print "hi") 42))

More examples
Sometimes a macro should re-evaluate an argument it is passed

– If not, as in dbl, then use a local binding as needed:

Also good style for macros not to have surprising evaluation order
– Good rule of thumb to preserve left-to-right
– Bad example (fix with a local binding):

Fall 2011 13 CSE341: Programming Languages

(define-syntax dbl
 (syntax-rules ()
 [(dbl x)
 (let ([y x]) (+ y y))]))

(define-syntax take
 (syntax-rules (from)
 [(take e1 from e2)
 (- e2 e1)]))

Local variables in macros
In C/C++, defining local variables inside macros is unwise

– When needed done with hacks like __strange_name34

Here’s why with a silly example:
– Macro:

– Use:

– Naïve expansion:

– But instead Racket “gets it right,” which is part of hygiene

Fall 2011 14 CSE341: Programming Languages

(define-syntax dbl
 (syntax-rules ()
 [(dbl x) (let ([one 1])
 (* 2 x one))]))

(let ([one 7]) (dbl one))

(let ([one 7]) (let* ([one 1])
 (* 2 one one)))

The other side of hygiene

This also looks like it would do the “wrong” thing
– But Racket’s hygienic macros do the “right thing”

– Macro:

– Use:

– Naïve expansion:

Fall 2011 15 CSE341: Programming Languages

(define-syntax dbl
 (syntax-rules ()
 [(dbl x) (* 2 x)]))

(let ([* +]) (dbl 42))

(let ([* +]) (* 2 42))

How hygienic macros work

A hygienic macro system:
– Secretly renames local variables in macros with fresh names
– Looks up variables used in macros where the macro is defined

Neither of these rules are followed by the “naïve expansion” most
macro systems use

– Without hygiene, macros are much more brittle (non-modular)

Rarely hygiene is not what you want
– Racket has somewhat complicated support for that

Fall 2011 16 CSE341: Programming Languages

More examples

See lec16.rkt for macros that:

• Allow 0, 1, or 2 local bindings with fewer parens than let*

• A for loop for executing a body a fixed number of times

• A re-implementation of let* in terms of let

– Requires macros that take any number of arguments
– Requires recursive macros

Fall 2011 17 CSE341: Programming Languages

