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Today 

Primary focus: Powerful programming idioms related to: 

– Delaying evaluation (using functions) 

– Remembering previous results (using mutation) 

Lazy evaluation, Streams, Memoization 

 

But first need to discuss: 

– Mutation in Racket 

– The truth about cons cells (they’re just pairs) 

– mcons cells (mutable pairs) 
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Set! 

• Unlike ML, Racket really has assignment statements 

– But used only-when-really-appropriate! 
 

 

 
 

• For the x in the current environment, subsequent lookups of x 

get the result of evaluating expression e 

– Any code using this x will be affected 

– Like Java’s x = e 

 

• Once you have side-effects, sequences are useful: 
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(set! x e) 

(begin e1 e2 … en) 



Example 

Example uses set! at top-level; mutating local variables is similar 

 

 

 

 

 

 

 
 

Not much new here: 

– Environment for closure determined when function is defined, 

but body is evaluated when function is called 

– Once an expression produces a value, it is irrelevant how the 

value was produced 
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(define b 3)  

(define f (lambda (x) (* 1 (+ x b))))  

(define c (+ b 4)) ; 7 

(set! b 5) 

(define z (f 4))   ; 9 

(define w c)       ; 7 



Top-level 

• Mutating top-level definitions is particularly problematic 

– What if any code could do set! on anything? 

– How could we defend against this? 

 

• A general principle: If something you need not to change might 

change, make a local copy of it.  Example: 

 

 

 

 

 

     Could use a different name for local copy but do not need to 
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(define b 3)  

(define f  

  (let ([b b]) 

    (lambda (x) (* 1 (+ x b))))) 



But wait… 

• Simple elegant language design: 

– Primitives like + and * are just predefined variables bound to 

functions 

– But maybe that means they are mutable 

– Example continued: 

 

 

 

 

 

– Even that won’t work if f uses other functions that use things 

that might get mutated – all functions would need to copy 

everything mutable they used 
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(define f  

  (let ([b b] 

        [+ +] 

        [* +]) 

    (lambda (x) (* 1 (+ x b))))) 



No such madness 

In Racket, you do not have to program like this 

– Each file is a module 

– If a module does not use set! on a top-level variable, then 

Racket makes it constant and forbids set! outside the module 

– Primitives like +, *, and cons are in a module that does not 

mutate them 

 

In Scheme, you really could do (set! + cons) 

– Naturally, nobody defended against this in practice so it would 

just break the program 

 

Showed you this for the concept of copying to defend against mutation 
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The truth about cons 

cons just makes a pair 

– By convention and standard library, lists are nested pairs 
that eventually end with null 

 

 

 

 

 

 

Passing an improper list to functions like length is a run-time error 
 

So why allow improper lists? 

– Pairs are useful 

– Without static types, why distinguish (e1,e2) and e1::e2 
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(define pr (cons 1 (cons #t "hi"))) ; '(1 #t . "hi") 

(define hi (cdr (cdr pr))) 

(define no (list? pr)) 

(define yes (pair? pr)) 

(define lst (cons 1 (cons #t (cons "hi" null)))) 

(define hi2 (car (cdr (cdr pr)))) 



cons cells are immutable 

What if you wanted to mutate the contents of a cons cell? 

– In Racket you can’t (major change from Scheme) 

– This is good 

• List-aliasing irrelevant 

• Implementation can make a fast list? since listness is 

determined when cons cell is created 
 

This does not mutate the contents: 

 

 

 

 
 

– Like Java’s x = new Cons(42,null), not x.car = 42 
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(define x (cons 14 null)) 

(define y x) 

(set! x (cons 42 null)) 

(define fourteen (car y)) 



mcons cells are mutable 

Since mutable pairs are sometimes useful (will use them later in 

lecture), Racket provides them too: 

– mcons 

– mcar 

– mcdr 

– mpair? 

– set-mcar! 

– set-mcdr! 

 

Run-time error to use mcar on a cons cell or car on a mcons cell 
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Delayed evaluation 

For each language construct, the semantics specifies when 

subexpressions get evaluated.  In ML, Racket, Java, C: 

– Function arguments are eager (call-by-value) 

– Conditional branches are not 

 

It matters: calling fact-wrong never terminates: 
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(define (my-if-bad x y z)  

  (if x y z)) 

 

(define (fact-wrong n)  

    (my-if-bad (= n 0) 

               1 

               (* n (fact-wrong (- n 1))))) 



Thunks delay 

We know how to delay evaluation: put expression in a function! 

– Thanks to closures, can use all the same variables later 
 

A zero-argument function used to delay evaluation is called a thunk 

– As a verb: thunk the expression 
 

This works (though silly to wrap if like this): 
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(define (my-if x y z)  

  (if x (y) (z))) 

 

(define (fact n)  

    (my-if (= n 0) 

           (lambda() 1) 

           (lambda() (* n (fact (- n 1)))))) 



Avoiding expensive computations 

Thunks let you skip expensive computations if they aren’t needed 

 

Great if take the true-branch: 

 

 

 

But a net-loss if you end up using the thunk more than once: 

 

 

 

 

 
 

In general, might now how many (more) times result is needed 
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(define (f th)  

  (if (…) 0 (…  (th) …))) 

(define (f th)  

  (… (if (…) 0 (… (th) …)) 

     (if (…) 0 (… (th) …)) 

     … 

     (if (…) 0 (… (th) …)))) 

 



Best of both worlds 

Assuming our expensive computation has no side effects, ideally 

we would: 

– Not compute it until needed 

– Remember the answer so future uses complete immediately 

Called lazy evaluation 

 

Languages where most constructs, including function calls, work 

this way are lazy languages 

– Haskell 

 

Racket predefines support for promises, but we can make our own 

– Thunks and mutable pairs are enough 
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Delay and force 
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(define (my-delay th) 

  (mcons #f th)) 

 

(define (my-force p) 

 (if (mcar p) 

      (mcdr p) 

     (begin (set-mcar! p #t) 

              (set-mcdr! p ((mcdr p))) 

              (mcdr p)))) 

 

 
An ADT represented by a mutable pair 

• #f in car means cdr is unevaluated thunk 

• Ideally hide representation in a module 



Using promises 
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(define (f p)  

  (… (if (…) 0 (… (my-force p) …)) 

     (if (…) 0 (… (my-force p) …)) 

     … 

     (if (…) 0 (… (my-force p) …)))) 

 

(f (my-delay (lambda () e))) 



Streams 

• A stream is an infinite sequence of values 

– So can’t make a stream by making all the values 

– Key idea: Use a thunk to delay creating most of the sequence 

– Just a programming idiom 
 

A powerful concept for division of labor: 

– Stream producer knows how create any number of values 

– Stream consumer decides how many values to ask for 
 

Some examples of streams you might (not) be familiar with: 

– User actions (mouse clicks, etc.) 

– UNIX pipes: cmd1 | cmd2 has cmd2 “pull” data from cmd1 

– Output values from a sequential feedback circuit 

Fall 2011 17 CSE341: Programming Languages 



Using streams 

Coding up a stream in your program is easy 

– We will do functional streams using pairs and thunks 

 

Let a stream be a thunk that when called returns a pair: 

'(next-answer . next-thunk) 

 

So given a stream st, the client can get any number of elements 

– First:   (car (s)) 

– Second:  (car ((cdr (s)))) 

– Third:       (car ((cdr ((cdr (s)))))) 

(Usually bind (cdr (st)) to a variable or pass to a recursive 

function) 
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Example using streams 

This function returns how many stream elements it takes to find 
one for which tester does not return #f 

– Happens to be written with a tail-recursive helper function 

 

 

 

 

 

 

 

– (stream) generates the pair 

– So recursively pass (cdr pr), the thunk for the rest of the 

infinite sequence 
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(define (number-until stream tester)  

  (letrec ([f (lambda (stream ans)  

                 (let ([pr (stream)]) 

                    (if (tester (car pr)) 

                         ans 

                        (f (cdr pr) (+ ans 1)))))]) 

      (f stream 1))) 



Making streams 

• How can one thunk create the right next thunk?  Recursion! 

– Make a thunk that produces a pair where cdr is next thunk 

 

 

 

 

 

 

 

 
 

 

• Why is this wrong? 
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(define ones (lambda () (cons 1 ones))) 
 

(define nats 

  (letrec ([f (lambda (x)  

               (cons x (lambda () (f (+ x 1)))))]) 

     (lambda () (f 1)))) 
 

(define powers-of-two 

  (letrec ([f (lambda (x)  

               (cons x (lambda () (f (* x 2)))))]) 

     (lambda () (f 2)))) 

(define ones-bad (lambda () (cons 1 (ones-bad)))) 



Memoization 

• If a function has no side effects and doesn’t read mutable 

memory, no point in computing it twice for the same arguments 

– Can keep a cache of previous results 

– Net win if (1) maintaining cache is cheaper than recomputing 

and (2) cached results are reused 

 

• Similar to how we implemented promises, but the function takes 

arguments so there are multiple “previous results” 

 

• For recursive functions, this memoization can lead to 

exponentially faster programs 

– Related to algorithmic technique of dynamic programming 
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How to do memoization: see example 

• Need to create a (mutable) cache that all calls using the cache 

shared 

– That is, must be defined outside the function(s) using it 

 

• See lec15.rkt for an example with fibonacci numbers 

 

– Good demonstration of the idea because it is short, but, as 

shown in the code, there are also easier less-general ways 
to make fibonacci efficient 

 

– (An association list (list of pairs) is a simple but sub-optimal 

data structure for a cache; okay for our example) 
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