
CSE341: Programming Languages

Lecture 15

Mutation, Pairs, Thunks, Laziness,

Streams, Memoization

Dan Grossman

Fall 2011

Today

Primary focus: Powerful programming idioms related to:

– Delaying evaluation (using functions)

– Remembering previous results (using mutation)

Lazy evaluation, Streams, Memoization

But first need to discuss:

– Mutation in Racket

– The truth about cons cells (they’re just pairs)

– mcons cells (mutable pairs)

Fall 2011 2 CSE341: Programming Languages

Set!

• Unlike ML, Racket really has assignment statements

– But used only-when-really-appropriate!

• For the x in the current environment, subsequent lookups of x

get the result of evaluating expression e

– Any code using this x will be affected

– Like Java’s x = e

• Once you have side-effects, sequences are useful:

Fall 2011 3 CSE341: Programming Languages

(set! x e)

(begin e1 e2 … en)

Example

Example uses set! at top-level; mutating local variables is similar

Not much new here:

– Environment for closure determined when function is defined,

but body is evaluated when function is called

– Once an expression produces a value, it is irrelevant how the

value was produced

Fall 2011 4 CSE341: Programming Languages

(define b 3)

(define f (lambda (x) (* 1 (+ x b))))

(define c (+ b 4)) ; 7

(set! b 5)

(define z (f 4)) ; 9

(define w c) ; 7

Top-level

• Mutating top-level definitions is particularly problematic

– What if any code could do set! on anything?

– How could we defend against this?

• A general principle: If something you need not to change might

change, make a local copy of it. Example:

 Could use a different name for local copy but do not need to

Fall 2011 5 CSE341: Programming Languages

(define b 3)

(define f

 (let ([b b])

 (lambda (x) (* 1 (+ x b)))))

But wait…

• Simple elegant language design:

– Primitives like + and * are just predefined variables bound to

functions

– But maybe that means they are mutable

– Example continued:

– Even that won’t work if f uses other functions that use things

that might get mutated – all functions would need to copy

everything mutable they used

Fall 2011 6 CSE341: Programming Languages

(define f

 (let ([b b]

 [+ +]

 [* +])

 (lambda (x) (* 1 (+ x b)))))

No such madness

In Racket, you do not have to program like this

– Each file is a module

– If a module does not use set! on a top-level variable, then

Racket makes it constant and forbids set! outside the module

– Primitives like +, *, and cons are in a module that does not

mutate them

In Scheme, you really could do (set! + cons)

– Naturally, nobody defended against this in practice so it would

just break the program

Showed you this for the concept of copying to defend against mutation

Fall 2011 7 CSE341: Programming Languages

The truth about cons

cons just makes a pair

– By convention and standard library, lists are nested pairs
that eventually end with null

Passing an improper list to functions like length is a run-time error

So why allow improper lists?

– Pairs are useful

– Without static types, why distinguish (e1,e2) and e1::e2

Fall 2011 8 CSE341: Programming Languages

(define pr (cons 1 (cons #t "hi"))) ; '(1 #t . "hi")

(define hi (cdr (cdr pr)))

(define no (list? pr))

(define yes (pair? pr))

(define lst (cons 1 (cons #t (cons "hi" null))))

(define hi2 (car (cdr (cdr pr))))

cons cells are immutable

What if you wanted to mutate the contents of a cons cell?

– In Racket you can’t (major change from Scheme)

– This is good

• List-aliasing irrelevant

• Implementation can make a fast list? since listness is

determined when cons cell is created

This does not mutate the contents:

– Like Java’s x = new Cons(42,null), not x.car = 42

Fall 2011 9 CSE341: Programming Languages

(define x (cons 14 null))

(define y x)

(set! x (cons 42 null))

(define fourteen (car y))

mcons cells are mutable

Since mutable pairs are sometimes useful (will use them later in

lecture), Racket provides them too:

– mcons

– mcar

– mcdr

– mpair?

– set-mcar!

– set-mcdr!

Run-time error to use mcar on a cons cell or car on a mcons cell

Fall 2011 10 CSE341: Programming Languages

Delayed evaluation

For each language construct, the semantics specifies when

subexpressions get evaluated. In ML, Racket, Java, C:

– Function arguments are eager (call-by-value)

– Conditional branches are not

It matters: calling fact-wrong never terminates:

Fall 2011 11 CSE341: Programming Languages

(define (my-if-bad x y z)

 (if x y z))

(define (fact-wrong n)

 (my-if-bad (= n 0)

 1

 (* n (fact-wrong (- n 1)))))

Thunks delay

We know how to delay evaluation: put expression in a function!

– Thanks to closures, can use all the same variables later

A zero-argument function used to delay evaluation is called a thunk

– As a verb: thunk the expression

This works (though silly to wrap if like this):

Fall 2011 12 CSE341: Programming Languages

(define (my-if x y z)

 (if x (y) (z)))

(define (fact n)

 (my-if (= n 0)

 (lambda() 1)

 (lambda() (* n (fact (- n 1))))))

Avoiding expensive computations

Thunks let you skip expensive computations if they aren’t needed

Great if take the true-branch:

But a net-loss if you end up using the thunk more than once:

In general, might now how many (more) times result is needed

 Fall 2011 13 CSE341: Programming Languages

(define (f th)

 (if (…) 0 (… (th) …)))

(define (f th)

 (… (if (…) 0 (… (th) …))

 (if (…) 0 (… (th) …))

 …

 (if (…) 0 (… (th) …))))

Best of both worlds

Assuming our expensive computation has no side effects, ideally

we would:

– Not compute it until needed

– Remember the answer so future uses complete immediately

Called lazy evaluation

Languages where most constructs, including function calls, work

this way are lazy languages

– Haskell

Racket predefines support for promises, but we can make our own

– Thunks and mutable pairs are enough

Fall 2011 14 CSE341: Programming Languages

Delay and force

Fall 2011 15 CSE341: Programming Languages

(define (my-delay th)

 (mcons #f th))

(define (my-force p)

 (if (mcar p)

 (mcdr p)

 (begin (set-mcar! p #t)

 (set-mcdr! p ((mcdr p)))

 (mcdr p))))

An ADT represented by a mutable pair

• #f in car means cdr is unevaluated thunk

• Ideally hide representation in a module

Using promises

Fall 2011 16 CSE341: Programming Languages

(define (f p)

 (… (if (…) 0 (… (my-force p) …))

 (if (…) 0 (… (my-force p) …))

 …

 (if (…) 0 (… (my-force p) …))))

(f (my-delay (lambda () e)))

Streams

• A stream is an infinite sequence of values

– So can’t make a stream by making all the values

– Key idea: Use a thunk to delay creating most of the sequence

– Just a programming idiom

A powerful concept for division of labor:

– Stream producer knows how create any number of values

– Stream consumer decides how many values to ask for

Some examples of streams you might (not) be familiar with:

– User actions (mouse clicks, etc.)

– UNIX pipes: cmd1 | cmd2 has cmd2 “pull” data from cmd1

– Output values from a sequential feedback circuit

Fall 2011 17 CSE341: Programming Languages

Using streams

Coding up a stream in your program is easy

– We will do functional streams using pairs and thunks

Let a stream be a thunk that when called returns a pair:

'(next-answer . next-thunk)

So given a stream st, the client can get any number of elements

– First: (car (s))

– Second: (car ((cdr (s))))

– Third: (car ((cdr ((cdr (s))))))

(Usually bind (cdr (st)) to a variable or pass to a recursive

function)

Fall 2011 18 CSE341: Programming Languages

Example using streams

This function returns how many stream elements it takes to find
one for which tester does not return #f

– Happens to be written with a tail-recursive helper function

– (stream) generates the pair

– So recursively pass (cdr pr), the thunk for the rest of the

infinite sequence

Fall 2011 19 CSE341: Programming Languages

(define (number-until stream tester)

 (letrec ([f (lambda (stream ans)

 (let ([pr (stream)])

 (if (tester (car pr))

 ans

 (f (cdr pr) (+ ans 1)))))])

 (f stream 1)))

Making streams

• How can one thunk create the right next thunk? Recursion!

– Make a thunk that produces a pair where cdr is next thunk

• Why is this wrong?

Fall 2011 20 CSE341: Programming Languages

(define ones (lambda () (cons 1 ones)))

(define nats

 (letrec ([f (lambda (x)

 (cons x (lambda () (f (+ x 1)))))])

 (lambda () (f 1))))

(define powers-of-two

 (letrec ([f (lambda (x)

 (cons x (lambda () (f (* x 2)))))])

 (lambda () (f 2))))

(define ones-bad (lambda () (cons 1 (ones-bad))))

Memoization

• If a function has no side effects and doesn’t read mutable

memory, no point in computing it twice for the same arguments

– Can keep a cache of previous results

– Net win if (1) maintaining cache is cheaper than recomputing

and (2) cached results are reused

• Similar to how we implemented promises, but the function takes

arguments so there are multiple “previous results”

• For recursive functions, this memoization can lead to

exponentially faster programs

– Related to algorithmic technique of dynamic programming

Fall 2011 21 CSE341: Programming Languages

How to do memoization: see example

• Need to create a (mutable) cache that all calls using the cache

shared

– That is, must be defined outside the function(s) using it

• See lec15.rkt for an example with fibonacci numbers

– Good demonstration of the idea because it is short, but, as

shown in the code, there are also easier less-general ways
to make fibonacci efficient

– (An association list (list of pairs) is a simple but sub-optimal

data structure for a cache; okay for our example)

Fall 2011 22 CSE341: Programming Languages

