
CSE341: Programming Languages

Lecture 14

Introduction to Racket

Dan Grossman

Fall 2011

Racket

Next 2+ weeks will use the Racket language (not ML) and the

DrRacket programming environment (not emacs)

– Installation / basic usage instructions on course website

• Like ML, functional focus with imperative features

– Anonymous functions, closures, no return statement, etc.

– But doesn’t rely on pattern-matching

• Unlike ML, no static type system: accepts more programs, but

most errors do not occur until run-time

• Really minimalist syntax

• Advanced features like macros, modules, quoting/eval,

continuations, contracts, …

– Will do only a couple of these

Fall 2011 2 CSE341: Programming Languages

Racket vs. Scheme

• Scheme and Racket are very similar languages

– Racket “changed its name” in 2010

– Notes and instructor may occasionally slip up

• Racket made some non-backward-compatible changes…

– How the empty list is written

– Cons cells not mutable

– How modules work

– Etc.

… and many additions

• Result: A modern language used to build some real systems

– More of a moving target (notes may become outdated)

– Online documentation, particular “The Racket Guide”

Fall 2011 3 CSE341: Programming Languages

Getting started

DrRacket “definitions window” and “interactions window” very

similar to how we used emacs and a REPL

– DrRacket has always focused on good-for-teaching

– See usage notes for how to use REPL, testing files, etc.

• You need to get good at learning new tools on your own,

but today’s demos (more code than in slides) will help

Start every file with a line containing only

 #lang racket

(Can have comments before this, but not code)

A file is a module containing a collection of definitions (bindings)…

Fall 2011 4 CSE341: Programming Languages

Example

Fall 2011 5 CSE341: Programming Languages

#lang racket

(define x 3)

(define y (+ x 2))

(define cube ; function

 (lambda (x)

 (* x (* x x))))

(define pow ; recursive function

 (lambda (x y)

 (if (= y 0)

 1

 (* x (pow x (- y 1))))))

Some niceties

Many built-in functions (a.k.a. procedures) take any number of args

– Yes * is just a function

– Yes we’ll show you later how to define variable-arity functions

Better style for non-anonymous function definitions (just sugar):

Fall 2011 6 CSE341: Programming Languages

(define cube

 (lambda (x)

 (* x x x)))

(define (cube x)

 (* x x x))

(define (pow x y)

 (if (= y 0)

 1

 (* x (pow x (- y 1)))))

Old-friend #1: currying

Currying is an idiom that works in any language with closures

– Less common in Racket because it has real multiple args

Fall 2011 7 CSE341: Programming Languages

(define pow

 (lambda (x)

 (lambda (y)

 (if (= y 0)

 1

 (* x ((pow x) (- y 1)))))))

(define three-to-the (pow 3))

(define eightyone (three-to-the 4))

(define sixteen ((pow 2) 4))

Sugar for defining curried functions:

(No sugar for calling curried functions)

(define ((pow x) y) (if …

Old-friend #2: List processing

Empty list: null (unlike Scheme, () doesn’t work, but '() does)

Cons constructor: cons (also (list e1 … en) is convenient)

Access head of list: car (car and cdr a historical accident)

Access tail of list: cdr

Check for empty: null?

Examples:

Fall 2011 8 CSE341: Programming Languages

(define (sum xs)

 (if (null? xs)

 0

 (+ (car xs) (sum (cdr xs)))))

(define (my-append xs ys)

 (if (null? xs)

 ys

 (cons (car xs) (my-append (cdr xs) ys))))

Racket syntax

Ignoring a few bells and whistles,

 Racket has an amazingly simple syntax

A term (anything in the language) is either:

– An atom, e.g., #t, #f, 34, "hi", null, 4.0, x, …

– A special form, e.g., define, lambda, if

• Macros will let us define our own

– A sequence of terms in parens: (t1 t2 … tn)

Note: Can use [anywhere you use (, but must match with]

– Will see shortly places where […] is common style

– DrRacket lets you type) and replaces it with] to match

Fall 2011 9 CSE341: Programming Languages

Why is this good?

By parenthesizing everything, converting the program text into a

tree representing the program (parsing) is trivial and unambiguous

– Atoms are leaves

– Sequences are nodes with elements as children

– (No other rules)

Also makes indentation easy

Example:

Contrast CSE142’s obsession with expression precedence

Fall 2011 10 CSE341: Programming Languages

(define cube

 (lambda (x)

 (* x x x)))

define

cube lambda

x *

x x x

Parenthesis bias

• If you look at the HTML for a web page, it takes the same

approach:

– (foo written <foo>

–) written </foo>

• But for some reason, LISP/Scheme/Racket is the target of

subjective parenthesis-bashing

– Bizarrely, often by people who have no problem with HTML

– You are entitled to your opinion about syntax, but a good

historian wouldn’t refuse to study a country where he/she

didn’t like people’s accents

Fall 2011 11 CSE341: Programming Languages

Fall 2011 12 CSE341: Programming Languages

http://xkcd.com/297/

LISP invented around 1959 by

John McCarthy (9/4/27-10/23/2011)

• Invented garbage collection

Parentheses matter

You must break yourself of one habit for Racket:

– Do not add/remove parens because you feel like it

• Parens are never optional or meaningless!!!

– In most places (e) means call e with zero arguments

– So ((e)) means call e with zero arguments and call the

result with zero arguments

Without static typing, often get hard-to-diagnose run-time errors

Fall 2011 13 CSE341: Programming Languages

Example

Correct:

Treats 1 as a zero-argument function (run-time error):

Gives if 5 arguments (syntax error)

3 arguments to define (including (n)) (syntax error)

Treats n as a function, passing it * (run-time error)

Fall 2011 14 CSE341: Programming Languages

(define (fact n)(if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n)(if (= n 0) (1)(* n (fact (- n 1)))))

(define (fact n)(if = n 0 1 (* n (fact (- n 1)))))

(define fact (n)(if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n)(if (= n 0) 1 (n * (fact (- n 1)))))

Dynamic typing

Will spend a later lecture contrasting static typing (e.g., ML) with

dynamic typing (e.g., Racket)

For now:

– Frustrating not to catch “little errors” like (n * x) until you

test your function

– But can use very flexible data structures and code without

convincing a type checker that it makes sense

Example:

– A list that can contain numbers or other lists

– Assuming lists or numbers “all the way down,” sum all the

numbers…

Fall 2011 15 CSE341: Programming Languages

Example

Fall 2011 16 CSE341: Programming Languages

(define (sum xs)

 (if (null? xs)

 0

 (if (number? (car xs))

 (+ (car xs) (sum (cdr xs)))

 (+ (sum (car xs)) (sum (cdr xs))))))

• No need for a fancy datatype binding, constructors, etc.

• Works no matter how deep the lists go

• But assumes each element is a list or a number

– Will get a run-time error if anything else is encountered

Better style

Avoid nested if-expressions when you can use cond-expressions

instead

– Can think of one as sugar for the other

General syntax: (cond [e1a e1b] [e2a e2b] … [eNa eNb])

– Good style: eNa should be #t

Example:

Fall 2011 17 CSE341: Programming Languages

(define (sum xs)

 (cond [(null? xs) 0]

 [(number? (car xs))

 (+ (car xs) (sum (cdr xs)))]

 [#t

 (+ (sum (car xs)) (sum (cdr xs)))]))

A variation

We could change our spec to say instead of errors on non-

numbers, we should just ignore them (same as adding 0)

So this version can work for any argument in all of Racket – will

never raise an error

– Compare carefully, we did not just add a branch

Fall 2011 18 CSE341: Programming Languages

(define (sum arg)

 (cond [(null? arg) 0]

 [(number? arg) arg]

 [(list? arg)

 (+ (sum (car arg)) (sum (cdr arg)))]

 [#t 0]))

Local bindings

• Racket has 4 ways to define local variables

– let

– let*

– letrec

– define

• Variety is good: They have different semantics

– Use the one most convenient for your needs, which helps

communicate your intent to people reading your code

• If any will work, use let

– Will help us better learn scope and environments

• Like in ML, the 3 kinds of let-expressions can appear anywhere

Fall 2011 19 CSE341: Programming Languages

Let

A let expression can bind any number of local variables

– Notice where all the parentheses are

The expressions are all evaluated in the environment from before

the let-expression

– Except the body can use all the local variables of course

– This is not how ML let-expressions work

– Convenient for things like (let ([x y][y x]) …)

Fall 2011 20 CSE341: Programming Languages

(define (silly-double x)

 (let ([x (+ x 3)]

 [y (+ x 2)])

 (+ x y -5)))

Let*

Syntactically, a let* expression is a let-expression with 1 more

character

The expressions are evaluated in the environment produced from

the previous bindings

– Can repeat bindings (later ones shadow)

– This is how ML let-expressions work

Fall 2011 21 CSE341: Programming Languages

(define (silly-double x)

 (let* ([x (+ x 3)]

 [y (+ x 2)])

 (+ x y -8)))

Letrec

Syntactically, a letrec expression is also the same

The expressions are evaluated in the environment that includes all

the bindings

– Needed for mutual recursion

– But expressions are still evaluated in order: accessing an
uninitialized binding would produce #<undefined>

• Would be bad style and surely a bug

• Remember function bodies not evaluated until called

Fall 2011 22 CSE341: Programming Languages

(define (silly-triple x)

 (letrec ([y (+ x 2)]

 [f (lambda(z) (+ z y w x))]

 [w (+ x 7)])

 (f -9)))

More letrec

• Letrec is ideal for recursion (including mutual recursion)

• Do not use later bindings except inside functions

– This example will return #<undefined> if x is true

– (By the way, everything is true except #f)

Fall 2011 23 CSE341: Programming Languages

(define (silly-mod2 x)

 (letrec

 ([even? ((x)(if (zero? x) #t (odd? (- x 1))))]

 [odd? ((x)(if (zero? x) #f (even? (- x 1))))])

 (if (even? x) 0 1)))

(define (bad-letrec x)

 (letrec ([y z]

 [z 13])

 (if x y z)))

Local defines

• In certain positions, like the beginning of function bodies, you

can put defines

– For defining local variables, same semantics as letrec

Fall 2011 24 CSE341: Programming Languages

(define (silly-mod2 x)

 (define (even? x)(if (zero? x) #t (odd? (- x 1))))

 (define (odd? x) (if (zero? x) #f (even?(- x 1))))

 (if (even? x) 0 1))

Top-level

The bindings in a file / module work like local defines, i.e., letrec

– Like ML, you can refer to earlier bindings

– Unlike ML, you can refer to later bindings

– But refer to later bindings only in function bodies

• Detail: Will get an error instead of #<undefined>

– Unlike ML, cannot define the same variable twice in module

• Would make no sense; can’t have both in environment

If each file is its own module, what is externally visible and how do

you refer to bindings in other files?

– Later lecture

– See usage notes for a way to test homework from a second file

Fall 2011 25 CSE341: Programming Languages

