CSE341, Fall 2011, Lecture 13 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

This lecture discusses two topics:

e What it means for two piece of code to be “equivalent” and various ways that two functions can be
equivalent.

e A more precise description of parametric polymorphism (type variables) and how even ML has lim-
itations in how much it supports generics. (Near the end of the course we will contrast parametric
polymorphism with subtyping.)

Neither of these topics involve showing you new constructs in ML that let you do something new or do
something more conveniently. Rather, these are more conceptual /theoretical topics that will hopeful improve
the way you look at software written in any language (particularly the notion of equivalence).

Why Talk About Equivalence?

The idea that one piece of code is “equivalent” to another piece of code is fundamental to programming and
computer science. You are informally thinking about equivalence every time you simplify some code or say,
“here’s another way to do the same thing.” This kind of reasoning comes up in several common scenarios:

e Code maintenance: Can you simplify, clean up, or reorganize code without changing how the rest of
the program behaves?

e Backward compatibility: Can you add new features without changing how any of the existing features
work?

e Optimization: Can you replace code with a faster or more space-efficient implementation?

e Abstraction: Can an external client tell if I make this change to my code?

Also notice that our use of restrictive signatures in the previous lecture was largely about equivalence: by
using a stricter interface, we make more different implementations equivalent because clients cannot tell the
difference.

We want a precise definition of equivalence so that we can decide whether certain forms of code maintenance
or different implementations of signatures are actually okay. We do not want the definition to be so strict
that we cannot make changes to improve code, but we do not want the definition to be so lenient that
replacing one function with an “equivalent” one can lead to our program producing a different answer.

Defining Equivalence

There are many different possible definitions that resolve this strict/lenient tension slightly differently. We
will focus on one that is useful and commonly assumed by people who design and implement programming
languages. We will also simplify the discussion by assuming that we have two implementations of a function
and we want to know if they are equivalent.

The intuition behind our definition is as follows:
e A function f is equivalent to a function g (or similarly for other pieces of code) if they produce the

same answer and have the same side-effects no matter where they are called in any program with any
arguments.



e Equivalence does not require the same running time, the same use of internal data structures, the same
helper functions, etc. All these things are considered “unobservable”, i.e., implementation details that
do not affect equivalence.

As an example, consider two very different ways of sorting a list. Provided they both produce the same final
answer for all inputs, they can still be equivalent no matter how they worked internally or whether one was
faster. However, if they behave differently for some lists, perhaps for lists that have repeated elements, then
they would not be equivalent.

However, the discussion above was simplified by implicitly assuming the functions always return and have
no other effect besides producing their answer. To be more precise, we need that the two functions when
given the same argument in the same environment:

1. Produce the same result (if they produce a result)
2. Have the same (non)termination behavior; i.e., if one runs forever the other must run forever

Mutate the same (visible-to-clients) memory in the same way.

-

Do the same input/output

5. Raise the same exceptions

These requirements are all important for knowing that if we have two equivalent functions, we could replace
one with the other and no use anywhere in the program will behave differently.

Another Benefit of Side-Effect-Free Programming

If you look at requirement 3, you will see that these are exactly the things that functional programs like
ML discourage you from doing. Yes, in ML you could have a function body mutate some global reference or
something, but it is generally bad style to do so. Other functional languages are pure functional languages
meaning there really is no way to do mutation inside (most) functions.

If you “stay functional” by not doing mutation, printing, etc. in function bodies as a matter of policy,
then callers can assume lots of equivalences they cannot otherwise. For example, can we replace f (x)+f (x)
with £ (x)*2? In Java, that can be a wrong thing to do since calling £ might update some counter or print
something. In ML, that’s also possible, but far less likely as a matter of style, so we tend to have more
things be equivalent. In a purely functional languages, we are guaranteed the replacement does not change
anything. The general point is that mutation really gets in your way when you try to decide if two pieces of
code are equivalent — it’s a great reason to avoid mutation.

In addition to being able to remove repeated computations (like f(x) above) when maintaining side-effect-
free programs, we can also reorder expressions much more freely. For example, in Java:

int a = f(x);
int b = g(y);
return b - a;

might produce a different result from:
return g(y) - £(x);
since the methods get called in a different order. Again, this is possible in ML too, but if we avoid side-effects,

it is much less likely. (We might still have to worry about a different exception getting thrown and other
details, however.)



General Forms of Equivalence

Equivalence is subtle, especially when you are trying to decide if two functions are equivalent without knowing
all the places they may be called. Yet this is common, such as when you are writing a library that unknown
clients may use. We now consider several situations where equivalence is guaranteed in any situation, so
these are good rules of thumb and are good reminders of how functions and closures work.

First, recall the various forms of syntactic sugar we have learned. We can always use or not use syntactic
sugar in a function body and get an equivalent function. If we couldn’t, then the construct we are using is
not actually syntactic sugar. For example, these definitions of £ are equivalent regardless of what g is bound
to:

fun f x = fun f x =
if x x andalso g x
then g x

else false

Notice though, that we could not necessarily replace x andalso g x with if g x then x else false.
Second, we can change the name of a local variable (or function parameter) provided we change all uses of

it consistently. For example, these two definitions of f are equivalent:

val y = 14 val y = 14
fun f x = x+y+x fun f z = z+y+z

But there is one rule: in choosing a new variable name, you cannot choose a variable that the function body
is already using to refer to something else. For example, if we try to replace x with y, we get fun y = y+y+y,
which is not the same as the function we started with. A previously-unused variable is never a problem.

Third, we can use or not use a helper function. For example, these two definitions of g are equivalent:

val y = 14 val y = 14
fun g z = (z+y+z)+z fun f x = x+y+x
fun g z = (f z)+z

Again, we must take not to change the meaning of a variable due to £ and g having potentially different
environments. For example, here the definitions of g are not equivalent:

val y = 14 val y = 14
val y = 7 fun f x = x+y+x
fun g z = (zt+y+z)+z valy =7

fun g z = (f z)+z

Fourth, as we have explained before with anonymous functions, unnecessary function wrapping is poor
style because there is a simpler equivalent way. For example, fun g y = £ y and val g = f are always
equivalent. Yet once again, there is a subtle complication. While this works when we have a variable like f
bound to the function we are calling, in the more general case we might have an expression that evaluates
to a function that we then call. Are fun g y = e y and val g = e always the same for any expression e?
No.

As asilly example, consider fun h() (print "hi" ; fn x => x+x) andeish(). Thenfun g y = Q) y
is a function that prints every time it is called. But val g = h() is a function that does not print — the
program will print "hi" once when creating the binding for g. This should not be mysterious: we know that



val-bindings evaluate their right-hand sides “immediately” but function bodies are not evaluated until they
are called.

A less silly example might be if h might raise an exception rather than returning a function.

Fifth, it is almost the case that let val p = el in e2 end can be sugar for (fn p => e2) el. After all,
for any expressions el and e2 and pattern p, both pieces of code:

e Evaluate el to a value
e Match the value against the pattern p
e If it matches, evaluate e2 to a value in the environment extended by the pattern match

e Return the result of evaluating e2

Since the two pieces of code “do” the exact same thing, they must be equivalent. In Racket, this will be the
case (with different syntax). In ML, the only difference is the type-checker: The variables in p are allowed
to have polymorphic types in the let-version, but not in the anonymous-function version.

For example, consider let val x = (fn y => y) in (x 0, x true) end. This silly code type-checks and
returns (0,true) because x has type a->’a. But (fn x => (x 0, x true)) (fn y => y) does not type-
check because there is no non-polymorphic type we can give to x and function-arguments cannot have
polymorphic types. This is just how type-inference works in ML and is related to the discussion of parametric
polymorphism below.

Revisiting our Definition of Equivalence

By design, our definition of equivalence ignores how much time or space a function takes to evaluate. So
two functions that always returned the same answer could be equivalent even if one took a nanosecond and
another took a million years. In some sense, this is a good thing since the definition would allow us to replace
the million-year version with the nanosecond version.

But clearly other definitions matter too. Course in data structures and algorithms study asymptotic com-
plexity precisely so that they can distinguish some algorithms as “better” (which clearly implies some “differ-
ence”) even though the better algorithms are producing the same answers. Moreover, asymptotic complexity,
by design, ignores “constant-factor overheads” that might matter in some programs so once again this stricter
definition of equivalence may be too lenient: we might actually want to know that two implementations take
“about the same amount of time.”

None of these definitions are superior. All of them are valuable perspectives computer scientists use all the
time. Observable behavior (our definition), asymptotic complexity, and actual performance are all intellectual
tools that are used almost every day by someone working on software.

Parametric Polymorphism

Parametric polymorphism is a fancy name for the “forall types” (i.e., types that mention type variables like
’a) we have been using in ML. While statically typed functional languages have had such types for over two
decades, they are now also part of widely used object-oriented languages such as Java and C#.

As an example, consider the ML type (?a*’b)->(’b*’a), which is the type we could give to a function that
takes a pair and returns a pair that swaps the position of the argument’s pieces (fun swap (x,y) = (y,x)).
What this means in ML is, “for all possible types, call them alpha and beta, we have a function that takes
a pair of an alpha and a beta and returns a pair of a beta and an alpha.” This type affects the caller and
the callee:

e The caller has the flexibility to use the function with any two not-necessarily-different types.



e The callee cannot make any assumption about what the types are. An amazing fact about ML is that
if any function of type (’a*’b)->(’b*’a) returns, then the value returned is the same value that swap
returns.

To make the key notion of “for all” more explicit, let’s write this type as forall ’a, ’b. ((’a*’b)->(’b*’a)).
This is not actually ML syntax (there is no way in ML to make the “for all”) explicit, but it helps explain
the general theory and where ML is limited.

Now, given a “for all type” of the form forall ’a. (t) where t is a type, we can explain “for all” by saying
that such a type can be instantiated by replacing it with the type t2 made from taking t and replacing all the

>a with any type t3. For example, starting with forall ’a, ’b. ((’ax’b)->(’b#*’a)) and instantiating it
with string for ’a and int->int for ’b, we end up with (string * (int->int)) -> ((int->int) * string),
which is simply a less-general type than we started with.

In theory, we could use “for all types” as smaller parts of larger types as in
(forall ’a. (’a -> (Pax’a))) -> ((int*int) * (bool*bool))

This describes a function that takes a polymorphic pair-making function and returns a pair of pairs. In ML,
you cannot use “forall” like this. Instead, forall is always implicit (you don’t write it) and all the way to the
outside left (it is never part of a larger type). So when you write

(’a -> (a*x’a)) -> ((int*int) * (bool*bool))
that is really saying
forall ’a. ((’a -> (Pax’a)) -> ((int*int) * (bool*bool)))

which is not quite the same thing. This type describes a function where the caller will have to instantiate ’a
with one type and then pass in a pair-making function for that type, rather than passing in a polymorphic
function.

This is admittedly a subtle point. To see an example, here is a function that has the first not-in-ML type
and does not have the second type:

fun f pairmaker = (pairmaker 7, pairmaker true)

This function does not type-check in ML. Type inference, which is the real reason ML has this “all the way
to the outside left” restriction will reject it because it looks like pairmaker has to take an int and a bool.
That would be possible if there were a way to say £ must be passed a polymorphic function. Then we could
call £ with arguments like fn y=>(y,y) but not with fn y=>(y+1,y). This limitation of ML arises rarely
in practice, but more often than never.

So why does ML have this restriction? Mostly because there are always trade-offs in language design and with
this restriction type inference is much more straightforward. But more generally, every sound type system
has “unnecessary” restrictions, meaning it rejects programs that “do nothing wrong”. This is because for
very basic definitions of “wrong” like “never try to treat a string like it is a function,” rejecting exactly the
programs that might do this is émpossible for an algorithm. (And algorithm here is something that must
terminate and produce the correct answer for every program.) This is the notion of undecidability that you
study in another course, usually starting with the halting problem.



