CSE341: Programming Languages

Lecture 13
Equivalence;
Parametric Polymorphism

Dan Grossman
Fall 2011

Upcoming schedule

* Today is Wednesday (duh ©)
» Friday will be an introduction to Racket

* Monday is our midterm, on material up through today
— Biased toward later lectures because material builds
— Section will focus on modules and do some review
— My exams are difficult; possibly a bit harder than samples
« Don't panic; it's fairer that way
— You can bring one side of one sheet of paper

« Will move into new concepts using Racket very quickly

— Homework 4 due about a week after midterm and is much
more than “getting started with Racket”

Fall 2011 CSE341: Programming Languages

Today

1. More careful look at what “two pieces of code are equivalent”
means

— Fundamental software-engineering idea
— Made easier with (a) abstraction (b) fewer side effects

2. Parametric polymorphism (a.k.a. generic types)
— Before we stop using a statically typed language

See that while generics are very convenient in ML, even ML
is more restrictive than it could be

(Will contrast with subtyping near end of course)

Won't learn any “new ways to code something up” today

Fall 2011 CSE341: Programming Languages

Equivalence

Must reason about “are these equivalent” all the time
— The more precisely you think about it the better

» Code maintenance: Can | simplify this code?

» Backward compatibility: Can | add new features without
changing how any old features work?

* Optimization: Can | make this code faster?

» Abstraction: Can an external client tell | made this change?

To focus discussion: When can we say two functions are
equivalent, even without looking at all calls to them?

— May not know all the calls (e.g., we are editing a library)

Fall 2011 CSE341: Programming Languages

A definition

Two functions are equivalent if they have the same “observable
behavior” no matter how they are used anywhere in any program

Given equivalent arguments, they:
— Produce equivalent results
— Have the same (non-)termination behavior
— Mutate (non-local) memory in the same way
— Do the same input/output
— Raise the same exceptions

Notice it is much easier to be equivalent if:

* There are fewer possible arguments, e.g., with a type system
and abstraction

* We avoid side-effects: mutation, input/output, and exceptions

Fall 2011 CSE341: Programming Languages

Example

Since looking up variables in ML has no side effects, these two
functions are equivalent:

fun £ x = x + x

But these next two are not equivalent in general: it depends on
what is passed for £

— They are if argument for £ has no side-effects
fun g (f,x) = val y = 2
(£ x) + (£ x) fun g (f,x) =
y * (£ x)

— Example: g ((fn i => print "hi" ; i), 7)
— Great reason for “pure” functional programming

Fall 2011 CSE341: Programming Languages

Another example

These are equivalent only if functions bound to g and h do not
raise exceptions or have side effects (printing, updating state, etc.)

— Again: pure functions make more things equivalent

fun £ x = fun £ x =
let let
val y = g x val z = h x
val z = h x val y = g x
in in
(v,2) (v,z)
end end

— Example: g divides by 0 and h mutates a top-level reference

— Example: g writes to a reference that h reads from

Fall 2011 CSE341: Programming Languages

Syntactic sugar

Using or not using syntactic sugar is always equivalent
— Else it's not actually syntactic sugar

Example:
fun £ x =
fun £ x = — if x
x andalso g x - then g x

else false

But be careful about evaluation order

fun £ x =

fun £ x = if g x
x andalso g x then x
else false

Fall 2011 CSE341: Programming Languages 8

Standard equivalences

Three general equivalences that always work for functions
— Inany (?) decent language

1. Consistently rename bound variables and uses

val y = 14
fun £ x = xtyt+x

—_— val y = 14
fun £ z = zt+y+t+z

But notice you can’t use a variable name already used in the
function body to refer to something else

val y = 14 val y = 14
fun £ x = x+y+x fun £ y = ytyty

Standard equivalences

Three general equivalences that always work for functions
— In (any?) decent language

2. Use a helper function or don’t

val y = 14 —_— val y = 14
fun g z = (z+y+tz)+z fun £ x = xty+x
fun g z = (f z)+z

But notice you need to be careful about environments

val y = 14 val y = 14
fun £ x = #funfy= val y = 7 fun £ x = x+y+x
let val y = 3 let val y = 3 R G L o () val y =7
in x+y end in y+y end fun g z = (f z)+z
Fall 2011 CSE341: Programming Languages 9 Fall 2011 CSE341: Programming Languages 10
Standard equivalences One more

Three general equivalences that always work for functions
— In (any?) decent language
3. Unnecessary function wrapping

fun £ x = x+x
val g = £

fun £ x = x+x —_—
fungy=£fy

But notice that if you compute the function to call and that
computation has side-effects, you have to be careful

fun £ x = x+x fun £ x = x+x

fun h () = (print "hi"; # fun h () = (print "hi";

£)
fun gy = (h()) ¥

)
val g = (h())

Fall 2011 CSE341: Programming Languages

If we ignore types, then ML let-bindings can be syntactic sugar for
calling an anonymous function:

let val x = el
in e2 end

(fn x => e2) el

— These both evaluate el to v1, then evaluate e2 in an
environment extended to map x to v1

— So exactly the same evaluation of expressions and result

But in ML, there is a type-system difference:
- x on the left can have a polymorphic type, but not on the right
— Can always go from right to left
— If x need not be polymorphic, can go from left to right

Fall 2011 CSE341: Programming Languages 12

What about performance?

According to our definition of equivalence, these two functions are
equivalent, but we learned one is awful

— (Actually we studied this before pattern-matching)

fun max xs =
case xs of
[l => raise Empty

fun max xs =
case xs of
[1 => raise Empty

Different definitions for different jobs

» CSE341: PL Equivalence: given same inputs, same outputs and
effects

— Good: Let’s us replace bad max with good max
— Bad: Ignores performance in the extreme

» CSE332: Asymptotic equivalence: Ignore constant factors
— Good: Focus on the algorithm and efficiency for large inputs

| x::[1 = x | x::[1 = x — Bad: Ignores “four times faster”
I => S 9 =>
| = i,f(sx S R s | xle::s * CSE333: Account for constant overheads, performance tune
then x val y = max xs — Good: Faster means different and better
else max xs in — Bad: Beware overtuning on “wrong” (e.g., small) inputs;
if x >y definition does not let you “swap in a different algorithm”
then x
else y Claim: Computer scientists implicitly (?) use all three every (?) day
d
Fall 2011 CSE341: Programming Langu?grels 13 Fall 2011 CSE341: Programming Languages 14
Parametric polymorphism Example

» Parametric polymorphism is a fancy name for “forall types” or
“generics”
— Allthose 'a 'b things we have leveraged

— Particularly useful with container types

* Now common in languages with type systems (ML, Haskell,
Java, C#, ...)

— Java didn’t have them for many years
— Wil contrast with subtyping near end of course

* Though we have used them, what exactly do they mean...

Fall 2011 CSE341: Programming Languages

fun swap (x,y) = (y,x) (* 'a*'b -> 'b*'a *)

Type means “for all types 'a, 'b, function from 'a*'bto 'b*'a”

— Clearly choice of type variable names here doesn’t matter:
same type as 'foo*'bar -> 'bar*'foo

In ML the “for all types ...” part is implicit, you need not (and
cannot) write it out

— Often is explicit in languages

Fascinating side comment: A function of type 'a*'b -> 'b*'a is
not necessarily equivalent to swap (exceptions, infinite loop, I/O,
mutation, ...), but if it returns, then it returns what swap does (!!)

Fall 2011 CSE341: Programming Languages 16

Instantiation

We can instantiate the type variables to get a less general type

Examples for 'a*'b -> 'b*'a

- int * string -> string * int

- string * string -> string * string

- (int->bool) * int -> int * (int->bool)
- 'a*int -> int*'a

Fall 2011 CSE341: Programming Languages

Non-example
Consider this (silly-but-short) code:

fun £ g = (g 7, g true)
val pair of pairs = £ (fn x => (x,x))

Running this code would work, produce ((7,7) , (true, true))

But £ will not type-check: type inference fails with conflicting argument
types for g

£ does not have type ('a->'a*'a) -> (int*int)* (bool*bool)
— Body must type-check with one type 'a that callers instantiate
£ could have type
(forall 'a, ('a->'a*'a)) -> (int*int)* (bool*bool)
— Could only be called with a polymorphic function
— But ML has no such type

Fall 2011 CSE341: Programming Languages 18

Why not?

* We just saw that ML cannot type-check a program that makes
perfect sense and might even be useful

— Never tries to misuse any values

» But every sound type system is like that
— cf. undecidability in CSE311
— Cannot reject exactly the programs that do “hi” (4,3)

» Designing a type system is about subtle trade-offs
— Done by specialists
— Always rejects some reasonable program

« ML preferred convenience of type inference and implicit “for all”
“all the way on the outside of types”

Fall 2011 CSE341: Programming Languages

