
CSE341: Programming Languages

Lecture 13

Equivalence;

Parametric Polymorphism

Dan Grossman

Fall 2011

Upcoming schedule

• Today is Wednesday (duh)

• Friday will be an introduction to Racket

• Monday is our midterm, on material up through today

– Biased toward later lectures because material builds

– Section will focus on modules and do some review

– My exams are difficult; possibly a bit harder than samples

• Don’t panic; it’s fairer that way

– You can bring one side of one sheet of paper

• Will move into new concepts using Racket very quickly

– Homework 4 due about a week after midterm and is much

more than “getting started with Racket”

Fall 2011 2 CSE341: Programming Languages

Today

1. More careful look at what “two pieces of code are equivalent”

means

– Fundamental software-engineering idea

– Made easier with (a) abstraction (b) fewer side effects

2. Parametric polymorphism (a.k.a. generic types)

– Before we stop using a statically typed language

– See that while generics are very convenient in ML, even ML

is more restrictive than it could be

– (Will contrast with subtyping near end of course)

Won’t learn any “new ways to code something up” today

Fall 2011 3 CSE341: Programming Languages

Equivalence

Must reason about “are these equivalent” all the time

– The more precisely you think about it the better

• Code maintenance: Can I simplify this code?

• Backward compatibility: Can I add new features without

changing how any old features work?

• Optimization: Can I make this code faster?

• Abstraction: Can an external client tell I made this change?

To focus discussion: When can we say two functions are

equivalent, even without looking at all calls to them?

– May not know all the calls (e.g., we are editing a library)

Fall 2011 4 CSE341: Programming Languages

A definition

Two functions are equivalent if they have the same “observable

behavior” no matter how they are used anywhere in any program

Given equivalent arguments, they:

– Produce equivalent results

– Have the same (non-)termination behavior

– Mutate (non-local) memory in the same way

– Do the same input/output

– Raise the same exceptions

Notice it is much easier to be equivalent if:

• There are fewer possible arguments, e.g., with a type system

and abstraction

• We avoid side-effects: mutation, input/output, and exceptions

Fall 2011 5 CSE341: Programming Languages

Example

Since looking up variables in ML has no side effects, these two

functions are equivalent:

But these next two are not equivalent in general: it depends on
what is passed for f

– They are if argument for f has no side-effects

– Example: g ((fn i => print "hi" ; i), 7)

– Great reason for “pure” functional programming

Fall 2011 6 CSE341: Programming Languages

fun f x = x + x
val y = 2

fun f x = y * x

fun g (f,x) =

 (f x) + (f x)

val y = 2

fun g (f,x) =

 y * (f x)

Another example

These are equivalent only if functions bound to g and h do not

raise exceptions or have side effects (printing, updating state, etc.)

– Again: pure functions make more things equivalent

– Example: g divides by 0 and h mutates a top-level reference

– Example: g writes to a reference that h reads from

Fall 2011 7 CSE341: Programming Languages

fun f x =

 let

 val y = g x

 val z = h x

 in

 (y,z)

 end

fun f x =

 let

 val z = h x

 val y = g x

 in

 (y,z)

 end

Syntactic sugar

Using or not using syntactic sugar is always equivalent

– Else it’s not actually syntactic sugar

Example:

But be careful about evaluation order

Fall 2011 8 CSE341: Programming Languages

fun f x =

 if x

 then g x

 else false

fun f x =

 x andalso g x

fun f x =

 if g x

 then x

 else false

fun f x =

 x andalso g x

Standard equivalences

Three general equivalences that always work for functions

– In any (?) decent language

1. Consistently rename bound variables and uses

But notice you can’t use a variable name already used in the

function body to refer to something else

Fall 2011 9 CSE341: Programming Languages

val y = 14

fun f x = x+y+x

val y = 14

fun f z = z+y+z

val y = 14

fun f x = x+y+x

val y = 14

fun f y = y+y+y

fun f x =

 let val y = 3

 in x+y end

fun f y =

 let val y = 3

 in y+y end

Standard equivalences

Three general equivalences that always work for functions

– In (any?) decent language

2. Use a helper function or don’t

But notice you need to be careful about environments

Fall 2011 10 CSE341: Programming Languages

val y = 14

fun f x = x+y+x

fun g z = (f z)+z

val y = 14

fun g z = (z+y+z)+z

val y = 14

fun f x = x+y+x

val y = 7

fun g z = (f z)+z

val y = 14

val y = 7

fun g z = (z+y+z)+z

Standard equivalences

Three general equivalences that always work for functions

– In (any?) decent language

3. Unnecessary function wrapping

But notice that if you compute the function to call and that

computation has side-effects, you have to be careful

Fall 2011 11 CSE341: Programming Languages

fun f x = x+x

fun g y = f y

fun f x = x+x

val g = f

fun f x = x+x

fun h () = (print "hi";

 f)

fun g y = (h()) y

fun f x = x+x

fun h () = (print "hi";

 f)

val g = (h())

One more

If we ignore types, then ML let-bindings can be syntactic sugar for

calling an anonymous function:

– These both evaluate e1 to v1, then evaluate e2 in an

environment extended to map x to v1

– So exactly the same evaluation of expressions and result

But in ML, there is a type-system difference:

– x on the left can have a polymorphic type, but not on the right

– Can always go from right to left

– If x need not be polymorphic, can go from left to right

Fall 2011 12 CSE341: Programming Languages

let val x = e1

in e2 end

(fn x => e2) e1

What about performance?

According to our definition of equivalence, these two functions are

equivalent, but we learned one is awful

– (Actually we studied this before pattern-matching)

Fall 2011 13 CSE341: Programming Languages

fun max xs =

 case xs of

 [] => raise Empty

 | x::[] => x

 | x::xs =>

 if x > max xs

 then x

 else max xs

fun max xs =

 case xs of

 [] => raise Empty

 | x::[] => x

 | x::xs =>

 let

 val y = max xs

 in

 if x > y

 then x

 else y

 end

Different definitions for different jobs

• CSE341: PL Equivalence: given same inputs, same outputs and

effects

– Good: Let’s us replace bad max with good max

– Bad: Ignores performance in the extreme

• CSE332: Asymptotic equivalence: Ignore constant factors

– Good: Focus on the algorithm and efficiency for large inputs

– Bad: Ignores “four times faster”

• CSE333: Account for constant overheads, performance tune

– Good: Faster means different and better

– Bad: Beware overtuning on “wrong” (e.g., small) inputs;

definition does not let you “swap in a different algorithm”

Claim: Computer scientists implicitly (?) use all three every (?) day

Fall 2011 14 CSE341: Programming Languages

Parametric polymorphism

• Parametric polymorphism is a fancy name for “forall types” or

“generics”

– All those 'a 'b things we have leveraged

– Particularly useful with container types

• Now common in languages with type systems (ML, Haskell,

Java, C#, …)

– Java didn’t have them for many years

– Will contrast with subtyping near end of course

• Though we have used them, what exactly do they mean…

Fall 2011 15 CSE341: Programming Languages

Example

Type means “for all types 'a, 'b, function from 'a*'b to 'b*'a”

– Clearly choice of type variable names here doesn’t matter:
same type as 'foo*'bar -> 'bar*'foo

In ML the “for all types …” part is implicit, you need not (and

cannot) write it out

– Often is explicit in languages

Fascinating side comment: A function of type 'a*'b -> 'b*'a is

not necessarily equivalent to swap (exceptions, infinite loop, I/O,

mutation, …), but if it returns, then it returns what swap does (!!)

Fall 2011 16 CSE341: Programming Languages

fun swap (x,y) = (y,x) (* 'a*'b -> 'b*'a *)

Instantiation

We can instantiate the type variables to get a less general type

Examples for 'a*'b -> 'b*'a

– int * string -> string * int

– string * string -> string * string

– (int->bool) * int -> int * (int->bool)

– 'a*int -> int*'a

– …

Fall 2011 17 CSE341: Programming Languages

Non-example

Consider this (silly-but-short) code:

Running this code would work, produce ((7,7),(true,true))

But f will not type-check: type inference fails with conflicting argument

types for g

f does not have type ('a->'a*'a) -> (int*int)*(bool*bool)

– Body must type-check with one type 'a that callers instantiate

f could have type

 (forall 'a,('a->'a*'a)) -> (int*int)*(bool*bool)

– Could only be called with a polymorphic function

– But ML has no such type

 Fall 2011 18 CSE341: Programming Languages

fun f g = (g 7, g true)

val pair_of_pairs = f (fn x => (x,x))

Why not?

• We just saw that ML cannot type-check a program that makes

perfect sense and might even be useful

– Never tries to misuse any values

• But every sound type system is like that

– cf. undecidability in CSE311

– Cannot reject exactly the programs that do “hi” (4,3)

• Designing a type system is about subtle trade-offs

– Done by specialists

– Always rejects some reasonable program

• ML preferred convenience of type inference and implicit “for all”

“all the way on the outside of types”

Fall 2011 19 CSE341: Programming Languages

