
CSE341, Fall 2011, Lecture 12 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

We start by showing how ML modules can be used to separate bindings into different namespaces. We then
build on this material to cover the much more interesting and important topic of using modules to hide
bindings and types.

Modules for Namespace Management

To learn the basics of ML, pattern-matching, and functional programming, we have written small programs
that are just a sequence of bindings. For larger programs, we want to use more structure in organizing our
code. In ML, we can use structures to define modules that contain a collection of bindings. At its simplest,
you can write structure Name = struct bindings end where Name is the name of your structure (you
can pick anything; capitalization is a convention) and bindings is any list of bindings, containing values,
functions, exceptions, datatypes, and type synonyms. Inside the structure you can use earlier bindings just
like we have been doing “at top-level” (i.e., outside of any module). Outside the structure, you refer to
a binding b in Name by writing Name.b. We have already been using this notation to use functions like
List.foldl; now you know how to define your own structures.

Though we will not do so in our examples, you can nest structures inside other structures to create a tree-
shaped hierarchy. But in ML, modules are not expressions: you cannot define them inside of functions, store
them in tuples, pass them as arguments, etc.

Used like this, structures are providing just namespace management, a way to avoid different bindings
in different parts of the program from shadowing each other. Java packages provide similar support for
namespace management. Namespace management is very useful, but not very interesting. Much more
interesting is giving structures signatures, which are types for modules. They let us provide strict interfaces
that code outside the module must obey. ML has several ways to do this with subtly different syntax and
semantics; we just show one way to write down an explicit signature for a module. Here is an example
signature definition and structure definition that says the structure MyMathLib must have the signature
MATHLIB:

signature MATHLIB =
sig
val fact : int -> int
val half_pi : real
val doubler : int -> int
end

structure MyMathLib :> MATHLIB =
struct
fun fact x =

if x=0
then 1
else x * fact (x - 1)

val half_pi = Math.pi / 2.0

fun doubler y = y + y
end

1



Because of the :> MATHLIB, the structure MyMathLib will typecheck only if it actually provides everything the
signature MATHLIB claims it does and with the right types. Signatures can also contain datatype, exception,
and type bindings. Because we check the signature when we compile MyMathLib, we can use this information
when we check any code that uses MyMathLib. In other words, we can just check clients assuming that the
signature is correct.

open: an overused by convenient shortcut

If in some scope you are using many bindings from another structure, it can be inconvenient to write
SomeLongStructureName.foo many times. Of course, you can use a val-binding to avoid this, e.g.,
val foo = SomeLongStructureName.foo, but this technique is ineffective if we are using many different
bindings from the structure (we would need a new variable for each) or for using constructor names from the
structure in patterns. So ML allows you to write open SomeLongStructureName, which provides “direct”
access (you can just write foo) to any bindings in the module that are mentioned in the module’s signature.
The scope of an open is the rest of the enclosing structure (or the rest of the program at top-level).

A common use of open is to write succinct testing code for a module outside the module itself. Other uses
of open are often frowned upon because it may introduce unexpected shadowing, especially since different
modules may reuse binding names. For example, a list module and a tree module may both have functions
named map.

Hiding things

Before learning how to use ML modules to hide implementation details from clients, let’s remember that
separating an interface from an implementation is probably the most important strategy for building correct,
robust, reusable programs. Moreover, we can already use functions to hide implementations in various ways.
For example, all 3 of these functions double their argument, and clients (i.e., callers) would have no way to
tell if we replaced one of the functions with a different one:

fun double1 x = x + x
fun double2 x = x * 2
val y = 2
fun double3 x = x * y

Another feature we use for hiding implementations is defining functions locally inside other functions. We
can later change, remove, or add locally defined functions knowing the old versions were not relied on by any
other code. From an engineering perspective, this is a crucial separation of concerns. I can work on improving
the implementation of a function and know that I am not breaking any clients. Conversely, nothing clients
can do can break how the functions above work.

But what if you wanted to have two top-level functions that code in other modules could use and have both
of them use the same hidden functions? There are ways to do this (e.g., create a record of functions), but it
would be convenient to have some top-level functions that were “private” to the module. In ML, there is no
“private” keyword like in other languages. Instead, you use signatures that simply mention less: anything
not explicitly in a signature cannot be used from the outside. For example, if we change the signature above
to:

signature MATHLIB =
sig
val fact : int -> int
val half_pi : real
end

then client code cannot call MyMathLib.doubler. The binding simply is not in scope, so no use of it will

2



type-check. In general, the idea is that we can implement the module however we like and only bindings
that are explicitly listed in the signature can be called directly by clients.

Introducing our extended example

The rest of this lecture uses a small module that implements rational numbers. While a real library would
provide many more features, ours will just support creating fractions, adding two of them together, and
converting them to strings. Our library intends to (1) prevent denominators of zero and (2) keep fractions
in reduced form (3/2 instead of 9/6 and 4 instead of 4/1). While negative fractions are fine, internally the
library never has a negative denominator (−3/2 instead of 3/−2 and 3/2 instead of −3/−2). The structure
below implements all these ideas, using the helper function reduce, which itself uses gcd, for reducing a
fraction.

structure Rational1 =
struct
(* Invariant 1: all denominators > 0

Invariant 2: rationals kept in reduced form *)
datatype rational = Whole of int | Frac of int*int
exception BadFrac

(* gcd and reduce help keep fractions reduced,
but clients need not know about them *)

(* they _assume_ their inputs are not negative *)
fun gcd (x,y) =

if x=y
then x
else if x < y
then gcd(x,y-x)
else gcd(y,x)

fun reduce r =
case r of

Whole _ => r
| Frac(x,y) =>
if x=0
then Whole 0
else let val d = gcd(abs x,y) in (* using invariant 1 *)

if d=y
then Whole(x div d)
else Frac(x div d, y div d)

end

(* when making a frac, we ban zero denominators *)
fun make_frac (x,y) =

if y = 0
then raise BadFrac
else if y < 0
then reduce(Frac(~x,~y))
else reduce(Frac(x,y))

(* using math properties, both invariants hold of the result
assuming they hold of the arguments *)

3



fun add (r1,r2) =
case (r1,r2) of

(Whole(i),Whole(j)) => Whole(i+j)
| (Whole(i),Frac(j,k)) => Frac(j+k*i,k)
| (Frac(j,k),Whole(i)) => Frac(j+k*i,k)
| (Frac(a,b),Frac(c,d)) => reduce (Frac(a*d + b*c, b*d))

(* given invariant, prints in reduced form *)
fun toString r =

case r of
Whole i => Int.toString i

| Frac(a,b) => (Int.toString a) ^ "/" ^ (Int.toString b)

end

Since reduce and gcd are helper functions that we do not want clients to rely on or misuse, one natural
signature would be as follows:

signature RATIONAL_A =
sig
datatype rational = Frac of int * int | Whole of int
exception BadFrac
val make_frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string
end

To use this signature to hide gcd and reduce, we can just change the first line of the structure definition to
structure Rational1 :> RATIONAL_A.

Properties and Invariants of our Module

While this approach ensures clients do not call gcd or reduce directly (since they “do not exist” outside the
module), this is not enough to ensure the bindings in the module are used correctly. What “correct” means
for a module depends on the specification for the module (not the definition of the ML language), so let’s
be more specific about some of the desired properties of our library for rational numbers and the invariants
that our code seeks to maintain to provide these properties:

• Property: toString always returns a string representation in reduced form

• Property: No code goes into an infinite loop

• Property: No code divides by zero

• Property: There are no fractions with denominators of 0

• Invariant: All denominators are greater than 0 (a negative fraction has a negative numerator)

• Invariant: All values of type rational returned by any function are already in reduced form

The properties are externally visible; they are what we promise clients. The invariants are internal ; they
are facts about the implementation that ensure the properties. The code above maintains the invariants and
relies on them in certain places, notably:

4



• gcd will violate the properties if called with an arguments ≤ 0, but since we know denominators are
> 0, reduce can pass denominators to gcd without concern.

• toString and most cases of add do not need to call reduce because they can assume their arguments
are already in reduced form.

• add uses the property of mathematics that the product of two positive numbers is positive, so we know
a non-positive denominator is not introduced.

A Better Signature: Using an Abstract Type

Unfortunately, under signature RATIONAL_A, clients must still be trusted not to break the properties and in-
variants! Because the signature exposed the definition of the datatype binding, the ML type system will not
prevent clients from using the constructors Frac and Whole directly, bypassing all our work to establish and
preserve the invariants. Clients could make “bad” fractions like Rational.Frac(1,0), Rational.Frac(3,~2),
or Rational.Frac(9,6), any of which could then end up causing gcd or toString to misbehave according
to our specification. While we may have intended for the client only to use make_frac, add, and toString,
our signature allows more.

A natural reaction would be to hide the datatype binding by removing the line
datatype rational = Frac of int * int | Whole of int. While this is the right intuition, the result-
ing signature makes no sense and would be rejected: it repeatedly mentions a type rational that is not
known to exist. What we want to say instead is that there is a type rational but clients cannot know
anything about what the type is other than it exists. In a signature, we can do just that with an abstract
type, as this signature shows:

signature RATIONAL_B =
sig
type rational (* type now abstract *)
exception BadFrac
val make_frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string
end

(Of course, we also have to change the first line of the structure definition to use this signature instead. That
is always true, so we will stop mentioning it.)

This new feature, which makes sense only in signatures, is exactly what we want. It lets our module define
operations over a type without revealing the implementation of that type. The syntax is just to give a type
binding without a definition. The implementation of the module is unchanged; we are simply changing how
much information clients have.

Now, how can clients make rationals? Well, the first one will have to be made with make_frac. After that,
more rationals can be made with make_frac or add. There is no other way, so thanks to the way we wrote
make_frac and add, all rationals will always be in reduced form with a positive denominator.

What RATIONAL_B took away from clients compared to RATIONAL_A is the constructors Frac and Whole. So
clients cannot create rationals directly and they cannot pattern-match on rationals. They have no idea how
they are represented internally. They don’t even know rational is implemented as a datatype.

Abstract types are a Really Big Deal in programming.

5



A Cute Twist: Expose the Whole function

By making the rational type abstract, we took away from clients the Frac and Whole constructors. While
this was crucial for ensuring clients could not create a fraction that was not reduced or had a non-positive
denominator, only the Frac constructor was problematic. Since allowing clients to create whole numbers
directly cannot violate our specification, we could add a function like:

fun make_whole x = Whole x

to our structure and val make_whole : int -> rational to our signature. But this is unnecessary function
wrapping; a shorter implementation would be:

val make_whole = Whole

and of course clients cannot tell which implementation of make_whole we are using. But why create a new
binding make_whole that is just the same thing as Whole? Instead, we could just export the constructor as
a function with this signature and no changes or additions to our structure:

signature RATIONAL_C =
sig
type rational (* type still abstract *)
exception BadFrac
val Whole : int -> rational (* client knows only that Whole is a function *)
val make_frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string
end

This signature tells clients there is a function bound to Whole that takes an int and produces a rational.
That is correct: this binding is one of the things the datatype binding in the structure creates. So we are
exposing part of what the datatype binding provides: that rational is a type and that Whole is bound to
a function. We are still hiding the rest of what the datatype binding provides: the Frac constructor and
pattern-matching with Frac and Whole.

Rules for Signature Matching

So far, our discussion of whether a structure “should type-check” given a particular signature has been rather
informal. Let us now enumerate more precise rules for what it means for a structure to match a signature.
(This terminology has nothing to do with pattern-matching.) If a structure does not match a signature
assigned to it, then the module does not type-check. A structure Name matches a signature BLAH if:

• For every val-binding in BLAH, Name must have a binding with that type or a more general type (e.g.,
the implementation can be polymorphic even if the signature says it is not — see below for an example).
This binding could be provided via a val-binding, a fun-binding, or a datatype-binding.

• For every non-abstract type-binding in BLAH, Name must have the same type binding.

• For every abstract type-binding in BLAH, Name must have some binding that creates that type (either
a datatype binding or a type synonym).

Notice that Name can have any additional bindings that are not in the signature.

6



Equivalent Implementations

Given our property- and invariant-preserving signatures RATIONAL_B and RATIONAL_C, we know clients cannot
rely on any helper functions or the actual representation of rationals as defined in the module. So we could
replace the implementation with any equivalent implementation that had the same properties: as long as
any call to the toString binding in the module produced the same result, clients could never tell. This
is another essential software-development task: improving/changing a library in a way that does not break
clients. Knowing clients obey an abstraction boundary, as enforced by ML’s signatures, is invaluable.

As a simple example, we could make gcd a local function defined inside of reduce and know that no client
will fail to work since they could not rely on gcd’s existence. More interestingly, let’s change one of the
invariants of our structure. Let’s not keep rationals in reduced form. Instead, let’s just reduce a rational
right before we convert it to a string. This simplifies make_frac and add, while complicating toString,
which is now the only function that needs reduce. Here is the whole structure, which would still match
signatures RATIONAL_A, RATIONAL_B, or RATIONAL_C:

structure Rational2 :> RATIONAL_A (* or B or C *) =
struct
datatype rational = Whole of int | Frac of int*int
exception BadFrac

fun make_frac (x,y) =
if y = 0
then raise BadFrac
else if y < 0
then Frac(~x,~y)
else Frac(x,y)

fun add (r1,r2) =
case (r1,r2) of

(Whole(i),Whole(j)) => Whole(i+j)
| (Whole(i),Frac(j,k)) => Frac(j+k*i,k)
| (Frac(j,k),Whole(i)) => Frac(j+k*i,k)
| (Frac(a,b),Frac(c,d)) => Frac(a*d + b*c, b*d)

fun toString r =
let fun gcd (x,y) =

if x=y
then x
else if x < y
then gcd(x,y-x)
else gcd(y,x)

fun reduce r =
case r of

Whole _ => r
| Frac(x,y) =>
if x=0
then Whole 0
else

let val d = gcd(abs x,y) in
if d=y

7



then Whole(x div d)
else Frac(x div d, y div d)

end
in

case reduce r of
Whole i => Int.toString i

| Frac(a,b) => (Int.toString a) ^ "/" ^ (Int.toString b)
end

end

If we give Rational1 and Rational2 the signature RATIONAL_A, both will type-check, but clients can
still distinguish them. For example, Rational1.toString(Rational1.Frac(21,3)) produces "21/3", but
Rational2.toString(Rational2.Frac(21,3)) produces "7". But if we give Rational1 and Rational2
the signature RATIONAL_B or RATIONAL_C, then the structures are equivalent for any possible client. This
is why it is important to use restrictive signatures like RATIONAL_B to begin with: so you can change the
structure later without checking all the clients.

While our two structures so far maintain different invariants, they do use the same definition for the type
rational. This is not necessary with signatures RATIONAL_B or RATIONAL_C; a different structure having
these signatures could implement the type differently. For example, suppose we realize that special-casing
whole-numbers internally is more trouble than it is worth. We could instead just use int*int and define
this structure:

structure Rational3 :> RATIONAL_B (* or C *)=
struct

type rational = int*int
exception BadFrac

fun make_frac (x,y) =
if y = 0
then raise BadFrac
else if y < 0
then (~x,~y)
else (x,y)

fun Whole i = (i,1)

fun add ((a,b),(c,d)) = (a*d + c*b, b*d)

fun toString (x,y) =
if x=0
then "0"
else

let fun gcd (x,y) =
if x=y
then x
else if x < y
then gcd(x,y-x)
else gcd(y,x)

val d = gcd (abs x,y)
val num = x div d
val denom = y div d

8



in
Int.toString num ^ (if denom=1

then ""
else "/" ^ (Int.toString denom))

end
end

(This structure takes the Rational2 approach of having toString reduce fractions, but that issue is largely
orthogonal from the definition of rational.)

Notice that this structure provides everything RATIONAL_B requires. The function make_frac is interesting
in that it takes an int*int and return an int*int, but clients do not know the actual return type, only
the abstract type rational. And while giving it an argument type of rational in the signature would
match, it would make the module useless since clients would not be able to create a value of type rational.
Nonetheless, clients cannot pass just any int*int to add or toString; they must pass something that they
know has type rational. As with our other structures, that means rationals are created only by make_frac
and add, which enforces all our invariants.

Our structure does not match RATIONAL_A since it does not provide rational as a datatype with constructors
Frac and Whole.

Our structure does match signature RATIONAL_C because we explicitly added a function Whole of the right
type. No client can distinguish our “real function” from the previous structures’ use of the Whole constructor
as a function.

The fact that fun Whole i = (i,1) matches val Whole : int -> rational is interesting. The type of
Whole in the module is actually polymorphic: ’a -> ’a * int. ML signature matching allows ’a -> ’a * int
to match int -> rational because ’a -> ’a * int is more general than int -> int * int and int -> rational
is a correct abstraction of int -> int * int. Less formally, the fact that Whole has a polymorphic type
inside the module does not mean the signature has to give it a polymorphic type outside the module.
And in fact it cannot while using the abstract type since Whole cannot have the type ’a -> int * int or
’a -> rational.

Different modules define different types

While we have defined different structures (e.g., Rational1, Rational2, and Rational3) with the same
signature (e.g., RATIONAL_B), that does not mean that the bindings from the different structures can be used
with each other. For example, Rational1.toString(Rational2.make_frac(2,3)) will not type-check,
which is a good thing since it would print an unreduced fraction. The reason it does not type-check is
that Rational2.rational and Rational1.rational are different types. They were not created by the
same datatype binding even though they happen to look identical. Moreover, outside the module we do
not know they look identical. Indeed, Rational3.toString(Rational2.make_frac(2,3)) really needs not
to type-check since Rational3.toString expects an int*int but Rational2.make_frac(2,3)) returns a
value made out of the Rational2.Frac constructor.

9


