
CSE341: Programming Languages

Lecture 11
Closures-ish Java & C

Dan Grossman
Fall 2011

Higher-order programming

• Higher-order programming, e.g., with map and filter, is great

• Language support for closures makes it very pleasant

• Without closures, we can still do it more manually / clumsily
– In OOP (e.g., Java) with one-method interfaces
– In procedural (e.g., C) with explicit environment arguments

• Working through this:

– Shows connections between languages and features
– Can help you understand closures and objects

Fall 2011 2 CSE341: Programming Languages

Example in ML

Fall 2011 3 CSE341: Programming Languages

datatype 'a mylist = Cons of 'a * ('a mylist) | Empty

(* ('a -> 'b) -> 'a mylist -> 'b mylist *)
fun map f xs = case xs of …

(* ('a -> bool) -> 'a mylist -> 'a mylist *)
fun filter f xs = case xs of …

(* 'a mylist -> int *)
fun length xs = case xs of …

val doubleAll = map (fn x => x*2)
val countNs xs = length (filter (fn x => x=n) xs)

Java
• Java 8 likely to have closures (like C#, Scala, Ruby, …)

– Write like lst.map((x) => x.age)
 .filter((x) => x > 21)
 .length()

– Make parallelism and collections much easier
– Encourage less mutation
– Hard parts for language designers:

• Implementation with other features and VM
• Evolving current standard library (else not worth it?)

• But how could we program in an ML style in Java today…

– Won’t look like pseudocode above
– Was even more painful before Java had generics

Fall 2011 4 CSE341: Programming Languages

One-method interfaces

• An interface is a named type [constructor]
• An object with one method can serve as a closure

– Different instances can have different fields [possibly
different types] like different closures can have different
environments [possibly different types]

• So an interface with one method can serve as a function type

Fall 2011 5 CSE341: Programming Languages

interface Func<B,A> { B m(A x); }

interface Pred<A> { boolean m(A x); }

interface Foo { String m(int x, int y); }

List types

Creating a generic list class works fine
– Assuming null for empty list here, a choice we may regret
– null makes every type an option type with implicit valOf

Fall 2011 6 CSE341: Programming Languages

class List<T> {
 T head;
 List<T> tail;
 List(T x, List<T> xs){
 head = x;
 tail = xs;
 }
 …
}

Higher-order functions
• Let’s use static methods for map, filter, length
• Use our earlier generic interfaces for “function arguments”
• These methods are recursive

– Less efficient in Java �
– Much simpler than common previous-pointer acrobatics

Fall 2011 7 CSE341: Programming Languages

static <A,B> List map(Func<B,A> f, List<A> xs){
 if(xs==null) return null;
 return new List(f.m(xs.head), map(f,xs.tail);
}
static <A> List<A> filter(Pred<A> f, List<A> xs){
 if(xs==null) return null;
 if(f.m(xs.head))
 return new List<A>(xs.head), filter(f,xs.tail);
 return filter(f,xs.tail);
}
static <A> length(List<A> xs){ … }

Why not instance methods?

A more OO approach would be instance methods:

Can work, but interacts poorly with null for empty list

– Cannot call a method on null
– So leads to extra cases in all clients of these methods if a list

might be empty

An even more OO alternative uses a subclass of List for empty-lists
rather than null

– Then instance methods work fine!

Fall 2011 8 CSE341: Programming Languages

class List<T> {
 List map(Func<B,T> f){…}
 List<T> filter(Pred<T> f){…}
 int length(){…}
}

Clients

• To use map method to make a List<Bar> from a List<Foo>:
– Define a class C that implements Func<Bar,Foo>

• Use fields to hold any “private data”
– Make an object of class C, passing private data to

constructor
– Pass the object to map

• As a convenience, can combine all 3 steps with anonymous
inner classes
– Mostly just syntactic sugar
– But can directly access enclosing fields and final variables
– Added to language to better support callbacks
– Syntax an acquired taste? See lec11.java

Fall 2011 9 CSE341: Programming Languages

Now C [for C experts]

• In Java, objects, like closures, can have “parts” that do not show
up in their types (interfaces)

• In C, a function pointer is just a code pointer, period
– So without extra thought, functions taking function pointer

arguments won’t be as useful as functions taking closures

• A common technique:
– Always define function pointers and higher-order functions to

take an extra, explicit environment argument
– But without generics, no good choice for type of list elements

or the environment
• Use void* and various type casts…

Fall 2011 10 CSE341: Programming Languages

The C trick
[ignore if not (yet) a C wizard; full implementation in lec11.c]

Don’t do this:

Do this to support clients that need private data:

List libraries like this aren’t common in C, but callbacks are!

– Lack of generics means lots of type casts in clients �
Fall 2011 11 CSE341: Programming Languages

list_t* map(void* (*f)(void*), list_t xs){
 … f(xs->head) …
}

list_t* map(void* (*f)(void*,void*)
 void* env, list_t xs) {
 … f(env,xs->head) …
}

