CSE 341
Lecture 27

JavaScript scope and closures

slides created by Marty Stepp
http://www.cs.washington.edu/341/

Recall: Scope

e scope: The enclosing context where values and
expressions are associated.

= essentially, the visibility of various identifiers in a program

e |exical scope: Scopes are nested via language syntax; a
name refers to the most local definition of that symbol.

= most modern languages (Java, C, ML, Scheme, JavaScript)

e dynamic scope: A name always refers to the most
recently executed definition of that symbol.

= Perl, Bash shell, Common Lisp (optionally), APL, Snobol

Lexical scope in Java

e In Java, every block ({}) defines a scope.

public class Scope {
public static int x = 10;

public static void main(String[] args) {
System.out.println(x);

if (x > 0) {

int x = 20;
System.out.println(x);

}
int x = 30;
System.out.println(x);

Lexical scope in JavaScript

e [n Java, there are only two scopes:
= global scope: global environment for functions, vars, etc.
" function scope: every function gets its own inner scope

var x = 10; // fo0.7js
function main() {
print(x);
X = 20;
if (x > 90) {
var x = 30;
print(x);

¥

var x
var f
(50);

40;
function(x)|{ print(x); }

Another scope example

function f() {
var a =1, b = 20, c;
print(a + " " + b +

+ C); // 1 20 undefined

// declares g (but doesn't call immediately!)
function g() {
var b = 300, c = 4000;

print(a + " " + b+ " " + C); // 1 300 4000
a=a+b+ c;
print(a + " "+ b+ " " + c); // 4301 300 4000
}
print(a + " " + b+ " " + C); // 1 20 undefined
g();
print(a + " " + b+ " " + C); // 4301 20 undefined

Lack of block scope

for (var i = 0; i < 10; i++) {
print(i);

}

print(i); // 11

if (1 > 5) {
var j = 3;

}
print(J);

e any variable declared lives until the end of the function
= |ack of block scope in JS leads to errors for some coders
= thisis a "bad part" of JavaScript (D. Crockford)

The future: let statement

var x = 5; // this code doesn't work today
var y = 0;
var z;
let (x = x + 10, yv = 12, z = 3) {

print(x + " " +y + " " + 2z); // 15 12 3
}
print(x + " "+ y + " " +2); // 5 0 undefined
print(let (x =2, y=3) x+ " " +vy); // 23
print(x + " " + y); // 5 ©

e upcoming versions of JS will have block scope using let
= https://developer.mozilla.org/en/New in JavaScript 1.7

(this code does not work yet!)

Implied globals

name = value;

function foo() {
X = 4;
print(x);
} // oops, x is still alive now (global)

e if you assign a value to a variable without var, JS
assumes you want a new global variable with that name

" hard to distinguish
= thisis a "bad part" of JavaScript (D.Crockford)

The global object

e technically no JavaScript code is "static" in the Java sense
= agll code lives inside of some object
= there is always a this reference that refers to that object

e all code is executed inside of a global object
" in browsers, it is also called window; in Rhino: global()

= global variables/functions you declare become part of it
— they use the global object as this when you call them

e "JavaScript's global object [...] is far and away the worst
part of JavaScript's many bad parts.” -- D. Crockford

Global object and this keyword

function printMe() {

}

N vV H VvV v Vv

print("I am " + this);

var teacher = {...}; // from past lecture

teacher.print = printMe;
teacher.print();

am Prof. Tyler Durden
print();

am [object global]

10

Recall: Closures

e closure: A first-class function that binds to free variables
that are defined in its execution environment.

e free variable: A variable referred to by a function that is
not one of its parameters or local variables.

=" bound variable: A free variable that is given a fixed value
when "closed over" by a function's environment.

e A closure occurs when a function is defined and it
attaches itself to the free variables from the surrounding
environment to "close" up those stray references.

11

Closures in JS

() {
=2;
return function() {
var z = 3;

print(x + y + z);

s
y = 10;
}
var g = f();
g(); // 1+10+3 is 14

e a function closes over free variables as it is declared
= grabs references to the names, not values (sees updates) i>

Declare-and-call pattern

(function(params) A
statements;

}) (params);

e declares and immediately calls an anonymous function
" used to create a new scope and closure around it
= can help to avoid declaring global variables/functions
= used by JavaScript libraries to keep global namespace clean

13

Declare-and-call example

// old: 3 globals // new: @ globals!
(function() {
var count = 9; var count = 09;
function incr(n) { function incr(n) {
count += n; count += n;
} }
function reset() { function reset() {
count = 9; count = 0;
} }
incr(4); incr(2); incr(4); incr(2);
print(count); print(count);
10O

e declare-and-call protects your code and avoids globals

= gvoids common problem with namespace/name collisions 14

Common closure bug

var funcs = [];
for (var 1 = 0; 1 < 5; i++) {
funcs[i] = function() { return i; };

}

> funcs[0]();
5

> funcs[1]();
5

e Closures that bind a loop variable often have this bug.
* Why do all of the functions return 57

15

Fixing the closure bug

var funcs = [];
for (var 1 = 0; 1 < 5; i++) {
funcs[i] = (function(n) {
return function() { return n; }

31)(1);
}
> funcs[0]();
1

> funcs[1]();
2

16

Objects with public data

// BankAccount "invariant": balance >= ©
function BankAccount(name, balance) {
this.name = name;
this.balance = Math.max(@, balance);
}
BankAccount.prototype.withdraw = function(amt) {
if (amt > @0 & & amt <= this.balance) {
this.balance -= amt;

}
s

e clients can directly modify a BankAccount's balance!

var ba = new BankAccount("Fred", 50.00);
ba.balance = -10; // ha ha

17

Objects with private data

// BankAccount invariant: balance >= ©
var BankAccount = (function() {
var name, balance;
var ctor = function(nam, bal) {
name = nam;
balance = Math.max(@, bal);
}s
ctor.prototype.withdraw = function(amt) {
if (amt > @ & & amt <= balance) {
balance -= amt;

}
}s
ctor.prototype.getName = function() {return name;}
ctor.prototype.getBalance = function() {return balance;}
return ctor;

HOs

18

Memoization and "private" data

var functionName = (function() {

1. create "memory" to store results.

2. create inner function to implement the
behavior, using memory as a cache.

3. return the 1inner function.

HOs

e since functions define a scope, we can wrap a function in
another one to make its memory a "private" variable

» only the inner function can see memory, since it encloses
over memory as parts of its closure (bound variable)

* NOTE: Underscore library can do memoization for you ...
19

Memoization example

var fib = (function() {
memory = {1:1, 2:1}; // initial memory
return function(n) {

s
IIOF

var mem = memory[n];
if (typeof(mem) !== "undefined") {
return mem; // re-use past result
}
// not in memory; must compute
var result = fib(n-1) + fib(n-2);
memory[n] = result; // remember
return result;

20

