CSE 341
Lecture 13

signatures

slides created by Marty Stepp

http://www.cs.washington.edu/341/
Recall: Why modules?

- **organization**: puts related code together
- **decomposition**: break down a problem
- **information hiding / encapsulation**: protect data from damage by other code
- group identifiers into **namespaces**; reduce # of globals
- provide a layer of **abstraction**; allows re-implementation
- ability to rigidly enforce data **invariants**
- provides a discrete unit for **testing**
- structure Helpers = struct
 fun square(x) = x*x;
 fun pow(x, 0) = 1 | pow(x, y) = x * pow(x, y - 1);
end;
structure Helpers :
 sig
 val square : int -> int
 val pow : int * int -> int
 end

• every structure you define has a public *signature*
 - *signature*: Set of symbols presented by a module to clients
 - by default, all definitions are presented in its signature
Limitations of structures

• Ways that Java hides information in a class?
 ▪ make a given field and method private, protected
 ▪ create an interface or superclass with fewer members; refer to the object through that type (polymorphism)

• signature: A group of ML declarations of functions, types, and variables exported to clients by a structure / module.
 ▪ combines Java's concepts of private and interface
Using signatures

• 1. Define a signature SIG that declares members A, B, C.
• 2. Structure ST1 defines A, B, C, D, E.
 ▪ ST1 can specify that it wants to use SIG as its signature.
 ▪ Now clients can call only A, B, C (not D or E).

 ▪ ST2 can also specify to use SIG as its public signature.
 ▪ Now clients can call only A, B, C (not F or G).
Signature syntax

signature \texttt{NAME} =

\begin{verbatim}
sig
 \textit{definitions}
end;
\end{verbatim}

a signature can contain:

- function \textit{declarations} (using \texttt{val}, not \texttt{fun}) ... no bodies
- \texttt{val} \textit{declarations} (variables; class constants), definitions
- exceptions
- type \textit{declarations}, definitions, and datatypes
Function declarations

val name: paramType * paramType ... -> resultType;

• Example:
 val max: int * int -> int;

• signatures don't have function definitions, with fun
• they instead have declarations, with val
• lists parameter types return type (no implementation)
Abstract type declarations

type name;

• Example:
 type Beverage;

• signatures shouldn't always define datatypes
 ▪ this can lock the implementer into a given implementation

• instead simply declare an abstract type
 ▪ this indicates to ML that such a type will be defined later
 ▪ now the declared type can be used as a param/return type
Signature example

(* Signature for binary search trees of integers. *)
signature INTTREE =
sig
 type intTree;

 val add: intTree -> intTree;
 val height : intTree -> int;
 val min : intTree -> int option;
end;
Implementing a signature

structure name :> SIGNATURE = struct
 definitions
end;

• Example:

structure IntTree :> INTTREE = struct
 ...
end;
Signature semantics

• when a structure implements a signature,
 ▪ structure must implement all members of the signature
 ▪ by convention, signature names are ALL_UPPERCASE
• Modify the Rational structure to implement a RATIONAL signature.
 - In the signature, hide any members that clients shouldn't use directly.
 (What members should be in the signature?)
(* Type signature for rational numbers. *)
signature RATIONAL = sig
 (* notice that we don't specify the innards of rational type *)
 type rational;
 exception Undefined;

 (* notice that gcd and reduce are not included here *)
 val new : int * int -> rational;
 val add : rational * rational -> rational;
 val toString : rational -> string;
end;
structure Rational :> RATIONAL = struct
 datatype rational = Whole of int | Fraction of int * int;
 exception Undefined of string;

 fun gcd(a, 0) = abs(a) (* 'private' *)
 | gcd(a, b) = gcd(b, a mod b);
 fun reduce(Whole(i)) = Whole(i) (* 'private' *)
 | reduce(Fraction(a, b)) =
 let val d = gcd(a, b)
 in if b = d then Whole(a div d)
 else Fraction(a div d, b div d)
 end;

 fun new(a, 0) = raise Undefined("cannot divide by zero")
 | new(a, b) = reduce(Fraction(a, b));

 fun add(Whole(i), Whole(j)) = Whole(i + j)
 | add(Whole(i), Fraction(c, d)) = Fraction(i*d + c, d)
 | add(Fraction(a, b), Whole(j)) = Fraction(a + j*b, b)
 | add(Fraction(a, b), Fraction(c, d)) =
 reduce(Fraction(a*d + c*b, b*d));

 (* toString unchanged *)
end;
Using a structure by its signature

- ```
 val r = Rational.new(3, 4);
 val r = - : Rational.rational
 - Rational.toString(r);
 val it = "3/4" : string

 - Rational.gcd(24, 56);
 stdIn:5.1-5.13 Error: unbound variable or constructor: gcd in path Rational.gcd

 - Rational.reduce(r);
 stdIn:1.1-1.15 Error: unbound variable or constructor: ...

 - Rational.Whole(5);
 stdIn:1.1-1.15 Error: unbound variable or constructor: ...
``` 

- using the signature restricts the structure's interface
  - clients cannot access or call any members not in the sig
A re-implementation

(* Alternate implementation using a tuple of (numer, denom). *)
structure RationalTuple :> RATIONAL = struct
  type rational = int * int;
  exception Undefined;

  fun gcd(a, 0) = abs(a)
  |   gcd(a, b) = gcd(b, a mod b);

  fun reduce(a, b) =
    let val d = gcd(a, b)
    in   if b >= 0 then (a div d, b div d) else reduce(~a, ~b)
    end;

  fun new(a, 0) = raise Undefined
  |   new(a, b) = reduce(a, b);

  fun add((a, b), (c, d)) = reduce(a * d + c * b, b * d);

  fun toString(a, 1) = Int.toString(a)
  |   toString(a, b) = Int.toString(a) ^ "/" ^ Int.toString(b);

  fun fromInteger(a) = (a, 1);
end;
Another re-implementation

(* Alternate implementation using a real number; imprecise due to floating point round-off errors. *)
structure Rational :> RATIONAL = struct
  type rational = real;
  exception Undefined;

  fun new(a, b) = real(a) / real(b);
  fun add(a, b:rational) = a + b;
  fun toString(r) = Real.toString(r);
end;
Signature exercise 2

• Use the new signature to enforce these invariants:
  ▪ All fractions will always be created in reduced form.
    – (In other words, for all fractions $a/b$, $\gcd(a, b) = 1$.)
  ▪ Negative fractions will be represented as $-a / b$, not $a / -b$.
    – (In other words, for all fractions $a/b$, $b > 0$.)

• Add the ability for clients to use the Whole constructor.

• Add operations such as ceil, floor, round, subtract, multiply, divide, ...